bibtype J - Journal Article
ARLID 0573978
utime 20250310153135.3
mtime 20230731235959.9
SCOPUS 85160864192
WOS 001000360800003
DOI 10.1007/s11263-023-01798-7
title (primary) (eng) Blur Invariants for Image Recognition
specification
page_count 18 s.
media_type P
serial
ARLID cav_un_epca*0253363
ISSN 0920-5691
title International Journal of Computer Vision
volume_id 131
volume 9 (2023)
page_num 2298-2315
publisher
name Springer
keyword Blurred image
keyword Object recognition
keyword Blur invariants
keyword Projection operators
keyword Moments
author (primary)
ARLID cav_un_auth*0101087
name1 Flusser
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0377447
name1 Lébl
name2 Matěj
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0389933
name1 Pedone
name2 M.
country FI
author
ARLID cav_un_auth*0336802
name1 Kostková
name2 Jitka
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2023/ZOI/flusser-0573978.pdf
source
url https://link.springer.com/article/10.1007/s11263-023-01798-7
cas_special
project
project_id GA21-03921S
agency GA ČR
ARLID cav_un_auth*0412209
abstract (eng) Blur is an image degradation that makes object recognition challenging. Restoration approaches solve this problem via image deblurring, deep learning methods rely on the augmentation of training sets. Invariants with respect to blur offer an alternative way of describing and recognising blurred images without any deblurring and data augmentation. In this paper, we present an original theory of blur invariants. Unlike all previous attempts, the new theory requires no prior knowledge of the blur type. The invariants are constructed in the Fourier domain by means of orthogonal projection operators and moment expansion is used for efficient and stable computation. Applying a general substitution rule, combined invariants to blur and spatial transformations are easy to construct and use. Experimental comparison to Convolutional Neural Networks shows the advantages of the proposed theory.
result_subspec WOS
RIV JD
FORD0 20000
FORD1 20200
FORD2 20204
reportyear 2024
num_of_auth 5
mrcbC52 2 R hod 4 4rh 4 20250310152908.7 4 20250310153135.3
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0344425
cooperation
ARLID cav_un_auth*0349870
name University of Oulu
country FI
confidential S
mrcbC91 A
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 4.486
mrcbT16-s 6.668
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2023
mrcbTft \nSoubory v repozitáři: flusser-0573978.pdf
mrcbU14 85160864192 SCOPUS
mrcbU24 PUBMED
mrcbU34 001000360800003 WOS
mrcbU63 cav_un_epca*0253363 International Journal of Computer Vision 0920-5691 1573-1405 Roč. 131 č. 9 2023 2298 2315 Springer