bibtype C - Conference Paper (international conference)
ARLID 0574036
utime 20240402214222.4
mtime 20230801235959.9
title (primary) (eng) Tensor Chain Decomposition and Function Interpolation
specification
page_count 5 s.
media_type P
serial
ARLID cav_un_epca*0574035
ISBN 978-1-6654-5244-1
title Proceedings of the 22nd IEEE Statistical Signal Processing Workshop
page_num 557-561
publisher
place Piscataway
name IEEE
year 2023
keyword multilinear models
keyword tensor train
keyword Rosenbrock function
author (primary)
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274170
name1 Phan
name2 A. H.
country JP
source
url http://library.utia.cas.cz/separaty/2023/SI/tichavsky-0574036.pdf
source_size 374 kB
cas_special
project
project_id GA22-11101S
agency GA ČR
country CZ
ARLID cav_un_auth*0435406
abstract (eng) Tensor Chain (TC) decomposition represents a given tensor as a chain (circle) of order-3 tensors (wagons) connected through tensor contractions. In this paper, we show the link between the TC decomposition and a structured Tucker decompositions, and propose a variant of the Krylov-Levenberg-Marquardt optimization, tailored for this problem. Many extensions can be considered, here we only mention decomposition of tensor with missing entries, which enables the tensor completion. Performance of the proposed algorithm is demonstrated on tensor decomposition of the sampled Rosenbrock function. It can be better modeled both as TC and canonical polyadic (CP) decomposition, but with TC, the reconstruction is possible with a lower number of function values.
action
ARLID cav_un_auth*0452745
name IEEE Statistical Signal Processing Workshop /22./
dates 20230702
mrcbC20-s 20230705
place Hanoi
country VN
RIV BB
FORD0 20000
FORD1 20200
FORD2 20201
reportyear 2024
num_of_auth 2
presentation_type PO
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0344729
confidential S
arlyear 2023
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU56 374 kB
mrcbU63 cav_un_epca*0574035 Proceedings of the 22nd IEEE Statistical Signal Processing Workshop 978-1-6654-5244-1 557 561 Piscataway IEEE 2023 CFP23SAP-USB