bibtype J - Journal Article
ARLID 0574253
utime 20240402214241.3
mtime 20230814235959.9
SCOPUS 85161338880
WOS 001021137800001
DOI 10.1016/j.jebo.2023.05.040
title (primary) (eng) Moment set selection for the SMM using simple machine learning
specification
page_count 26 s.
media_type P
serial
ARLID cav_un_epca*0251194
ISSN 0167-2681
title Journal of Economic Behavior & Organization
volume_id 212
volume 1 (2023)
page_num 366-391
publisher
name Elsevier
keyword Agent-based model
keyword Machine learning
keyword Simulated method of moments
keyword Stepwise selection
author (primary)
ARLID cav_un_auth*0453094
name1 Žíla
name2 Eric
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0293468
name1 Kukačka
name2 Jiří
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2023/E/kukacka-0574253.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0167268123001944?via%3Dihub
cas_special
project
project_id GA20-14817S
agency GA ČR
ARLID cav_un_auth*0397554
abstract (eng) This paper addresses the moment selection issue of the simulated method of moments, an estimation technique commonly applied to intractable agent-based models. We develop a simple machine learning extension reducing arbitrariness and automating the moment choice. Two algorithms are proposed: backward stepwise moment elimination and forward stepwise moment selection. The methodology is tested using simulations on a Markov-switching multifractal framework and two popular financial agent-based models with increasing complexity. We find that both algorithms can identify multiple moment sets that outperform all benchmark sets. Moreover, we achieve considerable in-sample estimation precision gains of up to 66 percent for agent-based models. Finally, an out-of-sample empirical exercise with S&P 500 data strongly supports the practical applicability of our methodology as the estimated models pass the validity test of overidentifying restrictions.
result_subspec WOS
RIV JC
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2024
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0344591
confidential S
mrcbC91 C
mrcbT16-e ECONOMICS
mrcbT16-j 1.089
mrcbT16-D Q2
arlyear 2023
mrcbU14 85161338880 SCOPUS
mrcbU24 PUBMED
mrcbU34 001021137800001 WOS
mrcbU63 cav_un_epca*0251194 Journal of Economic Behavior & Organization Roč. 212 č. 1 2023 366 391 0167-2681 1879-1751 Elsevier