bibtype |
J -
Journal Article
|
ARLID |
0574253 |
utime |
20240402214241.3 |
mtime |
20230814235959.9 |
SCOPUS |
85161338880 |
WOS |
001021137800001 |
DOI |
10.1016/j.jebo.2023.05.040 |
title
(primary) (eng) |
Moment set selection for the SMM using simple machine learning |
specification |
page_count |
26 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0251194 |
ISSN |
0167-2681 |
title
|
Journal of Economic Behavior & Organization |
volume_id |
212 |
volume |
1 (2023) |
page_num |
366-391 |
publisher |
|
|
keyword |
Agent-based model |
keyword |
Machine learning |
keyword |
Simulated method of moments |
keyword |
Stepwise selection |
author
(primary) |
ARLID |
cav_un_auth*0453094 |
name1 |
Žíla |
name2 |
Eric |
institution |
UTIA-B |
full_dept (cz) |
Ekonometrie |
full_dept (eng) |
Department of Econometrics |
department (cz) |
E |
department (eng) |
E |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0293468 |
name1 |
Kukačka |
name2 |
Jiří |
institution |
UTIA-B |
full_dept (cz) |
Ekonometrie |
full_dept |
Department of Econometrics |
department (cz) |
E |
department |
E |
full_dept |
Department of Econometrics |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
source |
|
cas_special |
project |
project_id |
GA20-14817S |
agency |
GA ČR |
ARLID |
cav_un_auth*0397554 |
|
abstract
(eng) |
This paper addresses the moment selection issue of the simulated method of moments, an estimation technique commonly applied to intractable agent-based models. We develop a simple machine learning extension reducing arbitrariness and automating the moment choice. Two algorithms are proposed: backward stepwise moment elimination and forward stepwise moment selection. The methodology is tested using simulations on a Markov-switching multifractal framework and two popular financial agent-based models with increasing complexity. We find that both algorithms can identify multiple moment sets that outperform all benchmark sets. Moreover, we achieve considerable in-sample estimation precision gains of up to 66 percent for agent-based models. Finally, an out-of-sample empirical exercise with S&P 500 data strongly supports the practical applicability of our methodology as the estimated models pass the validity test of overidentifying restrictions. |
result_subspec |
WOS |
RIV |
JC |
FORD0 |
10000 |
FORD1 |
10200 |
FORD2 |
10201 |
reportyear |
2024 |
inst_support |
RVO:67985556 |
permalink |
https://hdl.handle.net/11104/0344591 |
confidential |
S |
mrcbC91 |
C |
mrcbT16-e |
ECONOMICS |
mrcbT16-j |
1.089 |
mrcbT16-D |
Q2 |
arlyear |
2023 |
mrcbU14 |
85161338880 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
001021137800001 WOS |
mrcbU63 |
cav_un_epca*0251194 Journal of Economic Behavior & Organization Roč. 212 č. 1 2023 366 391 0167-2681 1879-1751 Elsevier |
|