bibtype C - Conference Paper (international conference)
ARLID 0574863
utime 20240402214328.7
mtime 20230827235959.9
SCOPUS 85182744825
DOI 10.1109/CSCC58962.2023.00030
title (primary) (eng) Particle Swarm Optimisation for Model Predictive Control Adaptation
specification
page_count 6 s.
media_type P
serial
ARLID cav_un_epca*0574861
ISBN 979-8-3503-3760-0
title Proceedings of the 27th International Conference on Circuits, Systems, Communications and Computers - CSCC 2023
page_num 144-149
publisher
place Piscataway
name IEEE
year 2023
editor
name1 Mastorakis
name2 Nikos
keyword data-driven modelling
keyword parameter estimation
keyword particle swarm optimisation
keyword predictive control
author (primary)
ARLID cav_un_auth*0101064
name1 Belda
name2 Květoslav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
full_dept Department of Adaptive Systems
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0382598
name1 Kuklišová Pavelková
name2 Lenka
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2023/AS/belda-0574863.pdf
cas_special
project
project_id GC23-04676J
agency GA ČR
country CZ
ARLID cav_un_auth*0453493
abstract (eng) This paper is focused on parameter identification for Model Predictive Control (MPC). Two identification techniques for parameters of Auto Regressive model with eXogenous input (ARX model) are considered: namely the identification based on Particle Swarm Optimisation (PSO) and Least Square (LS) method. PSO is investigated and LS is presented in square-root form as a reference method for comparison, respectively. The following points are elaborated and discussed: i) parameters’ estimation of ARX model, ii) design of PSO and LS procedures, iii) design of data-driven MPC algorithm in square-root form, iv) concept of possible use of PSO for semiautomatic fine tuning or retuning of MPC parameters. The proposed theoretical procedures are demonstrated using simply reproducible simulation experiments. Application possibilities are discussed towards robotics and mechatronics.
action
ARLID cav_un_auth*0453492
name International Conference on Circuits, Systems, Communications and Computers (CSCC 2023) /27./
dates 20230719
mrcbC20-s 20230722
place Rodos
country GR
RIV BC
FORD0 20000
FORD1 20200
FORD2 20204
reportyear 2024
num_of_auth 2
presentation_type ZP
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0344802
confidential S
arlyear 2023
mrcbU14 85182744825 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0574861 Proceedings of the 27th International Conference on Circuits, Systems, Communications and Computers - CSCC 2023 IEEE 2023 Piscataway 144 149 979-8-3503-3760-0
mrcbU67 Mastorakis Nikos 340