bibtype C - Conference Paper (international conference)
ARLID 0575077
utime 20240402214344.9
mtime 20230901235959.9
ISBN 978-1-7281-6328-4
DOI 10.1109/ICASSP49357.2023.10095386
title (primary) (eng) Dual-Cycle: Self-Supervised Dual-View Fluorescence Microscopy Image Reconstruction using CycleGAN
publisher
place Rhodes Island, Greece
name IEEE
pub_time 2023
specification
page_count 5 s.
media_type E
serial
ARLID cav_un_epca*0575081
ISBN 978-1-7281-6327-7
title Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
publisher
place Piscataway
name IEEE
year 2023
keyword Light-sheet fluorescence microscopy
keyword Dual-view imaging
keyword deep learning
keyword image deconvolution
author (primary)
ARLID cav_un_auth*0379363
name1 Kerepecký
name2 Tomáš
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0261977
name1 Liu
name2 J.
country US
author
ARLID cav_un_auth*0453851
name1 Ng
name2 X. W.
country US
author
ARLID cav_un_auth*0453852
name1 Piston
name2 D. W.
country US
author
ARLID cav_un_auth*0453853
name1 Kamilov
name2 U. S.
country US
source
url http://library.utia.cas.cz/separaty/2023/ZOI/kerepecky-0575077.pdf
cas_special
project
project_id GA21-03921S
agency GA ČR
ARLID cav_un_auth*0412209
abstract (eng) Three-dimensional fluorescence microscopy often suffers from anisotropy, where the resolution along the axial direction is lower than that within the lateral imaging plane. We address this issue by presenting Dual-Cycle, a new framework for joint deconvolution and fusion of dual-view fluorescence images. Inspired by the recent Neuroclear method, Dual-Cycle is designed as a cycle-consistent generative network trained in a self-supervised fashion by combining a dual-view generator and prior-guided degradation model. We validate Dual-Cycle on both synthetic and real data showing its state-of-the-art performance without any external training data.
action
ARLID cav_un_auth*0453251
name IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2023 /48./
dates 20230604
mrcbC20-s 20230610
place Rhodes
country GR
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2024
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0344936
mrcbC61 1
cooperation
ARLID cav_un_auth*0355988
name Washington University in St. Louis
country US
cooperation
ARLID cav_un_auth*0332359
name Washington University School of Medicine
country US
confidential S
arlyear 2023
mrcbU02 C
mrcbU10 2023
mrcbU10 Rhodes Island, Greece IEEE
mrcbU12 978-1-7281-6328-4
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0575081 Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) IEEE 2023 Piscataway 978-1-7281-6327-7