| bibtype |
J -
Journal Article
|
| ARLID |
0575211 |
| utime |
20240402214355.0 |
| mtime |
20230906235959.9 |
| SCOPUS |
85156114913 |
| WOS |
000973790000006 |
| DOI |
10.1214/23-EJP940 |
| title
(primary) (eng) |
Stochastic primitive equations with horizontal viscosity and diffusivity |
| specification |
| page_count |
56 s. |
| media_type |
E |
|
| serial |
| ARLID |
cav_un_epca*0041954 |
| ISSN |
1083-6489 |
| title
|
Electronic Journal of Probability |
| volume_id |
28 |
| publisher |
| name |
Institute of Mathematical Statistics |
|
|
| keyword |
Horizontal viscosity |
| keyword |
Multiplicative noise |
| keyword |
Nonlinear stochastic PDE |
| keyword |
Primitive equations |
| author
(primary) |
| ARLID |
cav_un_auth*0455071 |
| name1 |
Saal |
| name2 |
M. |
| country |
DE |
|
| author
|
| ARLID |
cav_un_auth*0370372 |
| name1 |
Slavík |
| name2 |
Jakub |
| institution |
UTIA-B |
| full_dept (cz) |
Stochastická informatika |
| full_dept |
Department of Stochastic Informatics |
| department (cz) |
SI |
| department |
SI |
| full_dept |
Department of Stochastic Informatics |
| country |
CZ |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| source |
|
| cas_special |
| abstract
(eng) |
We establish the existence and uniqueness of pathwise strong solutions to the stochastic 3D primitive equations with only horizontal viscosity and diffusivity driven by transport noise on a cylindrical domain M=(-h,0)xG, G⊂R^2 bounded and smooth, with the physical Dirichlet boundary conditions on the lateral part of the boundary. Compared to the deterministic case where the uniqueness of z-weak solutions holds in L^2, more regular initial data are necessary to establish uniqueness in the anisotropic space H^1_z L^2_{xy} so that the existence of local pathwise solutions can be deduced from the Gyöngy-Krylov theorem. Global existence is established using the logarithmic Sobolev embedding, the stochastic Gronwall lemma and an iterated stopping time argument. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10101 |
| reportyear |
2024 |
| inst_support |
RVO:67985556 |
| permalink |
https://hdl.handle.net/11104/0345388 |
| confidential |
S |
| article_num |
54 |
| mrcbC86 |
Article Statistics Probability |
| mrcbC91 |
A |
| mrcbT16-e |
STATISTICS&PROBABILITY |
| mrcbT16-f |
1.3 |
| mrcbT16-g |
0.2 |
| mrcbT16-h |
7.8 |
| mrcbT16-i |
0.00769 |
| mrcbT16-j |
1.288 |
| mrcbT16-k |
2436 |
| mrcbT16-q |
55 |
| mrcbT16-s |
1.419 |
| mrcbT16-y |
35.47 |
| mrcbT16-x |
1.2 |
| mrcbT16-3 |
580 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
1.200 |
| mrcbT16-6 |
166 |
| mrcbT16-7 |
Q2 |
| mrcbT16-C |
61.6 |
| mrcbT16-D |
Q2 |
| mrcbT16-E |
Q1 |
| mrcbT16-M |
0.59 |
| mrcbT16-N |
Q2 |
| mrcbT16-P |
61.6 |
| arlyear |
2023 |
| mrcbU14 |
85156114913 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000973790000006 WOS |
| mrcbU63 |
cav_un_epca*0041954 Electronic Journal of Probability Roč. 28 1 2023 1083-6489 1083-6489 Institute of Mathematical Statistics |
|