bibtype C - Conference Paper (international conference)
ARLID 0575361
utime 20240402214407.4
mtime 20230911235959.9
title (primary) (eng) Count Predictive Model with Mixed Categorical and Count Explanatory Variables
specification
page_count 6 s.
media_type P
serial
ARLID cav_un_epca*0575360
ISBN 979-8-3503-5804-9
ISSN Proceedings of the The 12th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) IDAACS'2023
title Proceedings of the The 12th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) IDAACS'2023
page_num 51-56
publisher
place Piscataway
name IEEE
year 2023
keyword count data
keyword Poisson mixtures
keyword Poisson regression
keyword recursive Bayesian mixture estimation
author (primary)
ARLID cav_un_auth*0383037
name1 Uglickich
name2 Evženie
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0452994
name1 Reznychenko
name2 T.
country CZ
source
url http://library.utia.cas.cz/separaty/2023/ZS/uglickich-0575361.pdf
cas_special
project
project_id 8A21009
agency GA MŠk
ARLID cav_un_auth*0432581
abstract (eng) The paper considers the problem of online prediction of a count variable based on real-time explanatory data of mixed count and categorical nature. The presented solution is based on (i) recursive Bayesian estimation of a mixture model of Poisson-distributed explanatory counts, using the categorical explanatory variable as a measurable pointer of the mixture, (ii) construction of a mixture of local Poisson regressions on the clustered data, and (iii) use of the pre-estimated mixtures for online prediction of the target count using actual measured explanatory data. The latter is one of the main contributions of the proposed approach. In addition, the dynamic model of the categorical explanatory variable preserves the functionality of the algorithm in case of its measurement failure. The experiments with simulations and real data report lower prediction errors compared to theoretical counterparts.
action
ARLID cav_un_auth*0454569
name The 12th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) IDAACS'2023
dates 20230907
mrcbC20-s 20230909
place Dortmund
country DE
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2024
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0345384
confidential S
arlyear 2023
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0575360 Proceedings of the The 12th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) IDAACS'2023 IEEE 2023 Piscataway 51 56 979-8-3503-5804-9 2770-4254