bibtype C - Conference Paper (international conference)
ARLID 0575759
utime 20240402214439.5
mtime 20230922235959.9
DOI 10.1109/ICIP49359.2023.10221948
title (primary) (eng) NeRD: Neural field-based Demosaicking
specification
page_count 5 s.
media_type E
serial
ARLID cav_un_epca*0575755
ISBN 978-1-7281-9835-4
title Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP)
page_num 1735-1739
publisher
place Piscataway
name IEEE
year 2023
keyword Demosaicking
keyword neural field
keyword implicit neural representation
author (primary)
ARLID cav_un_auth*0379363
name1 Kerepecký
name2 Tomáš
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0283562
name1 Novozámský
name2 Adam
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101087
name1 Flusser
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2023/ZOI/kerepecky-0575759.pdf
cas_special
project
project_id GA21-03921S
agency GA ČR
ARLID cav_un_auth*0412209
project
project_id StrategieAV21/1
agency AV ČR
country CZ
ARLID cav_un_auth*0441412
project
abstract (eng) We introduce NeRD, a new demosaicking method for generating full-color images from Bayer patterns. Our approach leverages advancements in neural fields to perform demosaicking by representing an image as a coordinate-based neural network with sine activation functions. The inputs to the network are spatial coordinates and a low-resolution Bayer pattern, while the outputs are the corresponding RGB values. An encoder network, which is a blend of ResNet and U-net, enhances the implicit neural representation of the image to improve its quality and ensure spatial consistency through prior learning. Our experimental results demonstrate that NeRD outperforms traditional and state-of-the-art CNN-based methods and significantly closes the gap to transformer-based methods.
action
ARLID cav_un_auth*0455338
name IEEE International Conference on Image Processing 2023 (ICIP 2023)
dates 20231008
mrcbC20-s 20231011
place Kuala Lumpur
country MY
RIV JC
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2024
num_of_auth 4
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0345842
cooperation
ARLID cav_un_auth*0329918
name FJFI ČVUT Praha
country CZ
confidential S
arlyear 2023
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0575755 Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP) 978-1-7281-9835-4 1735 1739 Piscataway IEEE 2023