bibtype J - Journal Article
ARLID 0575797
utime 20240903170655.2
mtime 20230925235959.9
SCOPUS 85161944015
WOS 001015318600001
DOI 10.14736/kyb-2023-2-0179
title (primary) (eng) Infinite probabilistic secret sharing
specification
page_count 19 s.
media_type P
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 59
volume 2 (2023)
page_num 179-197
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword secret sharing
keyword abstract probability space
keyword Sierpinski topology
keyword product measure
keyword span program
keyword Hilbert space program
author (primary)
ARLID cav_un_auth*0398469
name1 Csirmaz
name2 Laszlo
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
country HU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2023/SI/csirmaz-0575797.pdf
source
url https://www.kybernetika.cz/content/2023/2/179
cas_special
project
project_id GA19-04579S
agency GA ČR
country CZ
ARLID cav_un_auth*0380558
abstract (eng) A probabilistic secret sharing scheme is a joint probability distribution of the shares and the secret together with a collection of secret recovery functions. The study of schemes using arbitrary probability spaces and unbounded number of participants allows us to investigate their abstract properties, to connect the topic to other branches of mathematics, and to discover new design paradigms. A scheme is perfect if unqualified subsets have no information on the secret, that is, their total share is independent of the secret. By relaxing this security requirement, three other scheme types are defined. Our first result is that every (infinite) access structure can be realized by a perfect scheme where the recovery functions are non-measurable. The construction is based on a paradoxical pair of independent random variables which determine each other. Restricting the recovery functions to be measurable ones, we give a complete characterization of access structures realizable by each type of the schemes. In addition, either a vector-space or a Hilbert-space based scheme is constructed realizing the access structure. While the former one uses the traditional uniform distributions, the latter one uses Gaussian distributions, leading to a new design paradigm.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2024
num_of_auth 1
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0345844
confidential S
mrcbC91 A
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-j 0.192
mrcbT16-D Q4
arlyear 2023
mrcbU14 85161944015 SCOPUS
mrcbU24 PUBMED
mrcbU34 001015318600001 WOS
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 59 č. 2 2023 179 197 Ústav teorie informace a automatizace AV ČR, v. v. i.