bibtype J - Journal Article
ARLID 0575836
utime 20240903170559.5
mtime 20230926235959.9
SCOPUS 85175788005
WOS 001075119400005
DOI 10.14311/NNW.2023.33.017
title (primary) (eng) Using Poisson proximity-based weights for traffic flow state prediction
specification
page_count 25 s.
media_type P
serial
ARLID cav_un_epca*0290321
ISSN 1210-0552
title Neural Network World
volume_id 33
volume 4 (2023)
page_num 291-315
publisher
name Ústav informatiky AV ČR, v. v. i.
keyword traffic counts
keyword traffic flow state
keyword cluster prediction
keyword Poisson mixture
keyword recursive mixture estimation
author (primary)
ARLID cav_un_auth*0383037
name1 Uglickich
name2 Evženie
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type pdf
url http://library.utia.cas.cz/separaty/2023/ZS/uglickich-0575836.pdf
source
url http://nnw.cz/doi/2023/NNW.2023.33.017.pdf
cas_special
project
project_id 8A21009
agency GA MŠk
ARLID cav_un_auth*0432581
abstract (eng) The development of traffic state prediction algorithms embedded in intelligent transportation systems is of great importance for improving traffic conditions for drivers and pedestrians. Despite the large number of prediction methods, existing limitations still confirm the need to find a systematic solution and its adaptation to specific traffic data. This paper focuses on the relationship between traffic flow states in different urban locations, where these states are identified as clusters of traffic counts. Extending the recursive Bayesian mixture estimation theory to the Poisson mixtures, the paper uses the mixture pointers to construct the traffic state prediction model. Using the predictive model, the cluster at the target urban location is predicted based on the traffic counts measured in real time at the explanatory urban location. The main contributions of this study are: (i) recursive identification and prediction of the traffic state at each time instant, (ii) straightforward Poisson mixture initialization, and (iii) systematic theoretical background of the prediction approach. Results of testing the prediction algorithm on real traffic counts are presented.
result_subspec WOS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2024
num_of_auth 2
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0345847
confidential S
mrcbC91 A
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.164
mrcbT16-D Q4
arlyear 2023
mrcbU14 85175788005 SCOPUS
mrcbU24 PUBMED
mrcbU34 001075119400005 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0290321 Neural Network World 1210-0552 Roč. 33 č. 4 2023 291 315 Ústav informatiky AV ČR, v. v. i.