| bibtype |
J -
Journal Article
|
| ARLID |
0576148 |
| utime |
20240903115334.3 |
| mtime |
20231005235959.9 |
| SCOPUS |
85144846444 |
| WOS |
000903156200001 |
| DOI |
10.3390/sym14122667 |
| title
(primary) (eng) |
New Stability Results of an ABC Fractional Differential Equation in the Symmetric Matrix-Valued FBS |
| specification |
| page_count |
16 s. |
| media_type |
E |
|
| serial |
| ARLID |
cav_un_epca*0430743 |
| ISSN |
2073-8994 |
| title
|
Symmetry-Basel |
| volume_id |
14 |
| publisher |
|
|
| keyword |
stability analysis |
| keyword |
aggregation function |
| keyword |
control function |
| keyword |
fractional differential equations |
| keyword |
fuzzy sets |
| keyword |
ixed point |
| author
(primary) |
| ARLID |
cav_un_auth*0455747 |
| name1 |
Eidinejad |
| name2 |
Z. |
| country |
IR |
| share |
25 |
|
| author
|
| ARLID |
cav_un_auth*0434048 |
| name1 |
Saadati |
| name2 |
R. |
| country |
IR |
| share |
25 |
|
| author
|
| ARLID |
cav_un_auth*0101163 |
| name1 |
Mesiar |
| name2 |
Radko |
| institution |
UTIA-B |
| full_dept (cz) |
Ekonometrie |
| full_dept |
Department of Econometrics |
| department (cz) |
E |
| department |
E |
| full_dept |
Department of Econometrics |
| share |
25 |
| garant |
K |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0455888 |
| name1 |
Li |
| name2 |
Ch. |
| country |
CA |
| share |
25 |
|
| source |
|
| source |
|
| cas_special |
| abstract
(eng) |
By using a class of aggregation control functions, we introduce the concept of multiple-HU-OS1-stability and get an optimum approximation for a nonlinear single fractional differential equation (NS-ABC-FDE) with a Mittag-Leffler kernel. We apply an alternative fixed-point theorem to prove the existence of a unique solution and the multiple-HU-OS1-stability for the NS-ABC-FDE in the symmetric matrix-valued FBS. Finally, with an example, we show the application of the obtained results. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10101 |
| reportyear |
2024 |
| num_of_auth |
4 |
| inst_support |
RVO:67985556 |
| permalink |
https://hdl.handle.net/11104/0346453 |
| confidential |
S |
| article_num |
2667 |
| mrcbC86 |
3+4 Article Multidisciplinary Sciences |
| mrcbC91 |
A |
| mrcbT16-e |
MULTIDISCIPLINARYSCIENCES |
| mrcbT16-f |
2.7 |
| mrcbT16-g |
0.9 |
| mrcbT16-h |
2.4 |
| mrcbT16-i |
0.02545 |
| mrcbT16-j |
0.406 |
| mrcbT16-k |
22136 |
| mrcbT16-s |
0.483 |
| mrcbT16-5 |
2.400 |
| mrcbT16-6 |
2633 |
| mrcbT16-7 |
Q2 |
| mrcbT16-C |
51.4 |
| mrcbT16-D |
Q4 |
| mrcbT16-E |
Q3 |
| mrcbT16-M |
0.85 |
| mrcbT16-N |
Q1 |
| mrcbT16-P |
51.4 |
| arlyear |
2022 |
| mrcbU14 |
85144846444 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000903156200001 WOS |
| mrcbU63 |
cav_un_epca*0430743 Symmetry-Basel 2073-8994 2073-8994 Roč. 14 č. 12 2022 MDPI ONLINE |
|