bibtype J - Journal Article
ARLID 0576148
utime 20240903115334.3
mtime 20231005235959.9
SCOPUS 85144846444
WOS 000903156200001
DOI 10.3390/sym14122667
title (primary) (eng) New Stability Results of an ABC Fractional Differential Equation in the Symmetric Matrix-Valued FBS
specification
page_count 16 s.
media_type E
serial
ARLID cav_un_epca*0430743
ISSN 2073-8994
title Symmetry-Basel
volume_id 14
publisher
name MDPI
keyword stability analysis
keyword aggregation function
keyword control function
keyword fractional differential equations
keyword fuzzy sets
keyword ixed point
author (primary)
ARLID cav_un_auth*0455747
name1 Eidinejad
name2 Z.
country IR
share 25
author
ARLID cav_un_auth*0434048
name1 Saadati
name2 R.
country IR
share 25
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 25
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0455888
name1 Li
name2 Ch.
country CA
share 25
source
url http://library.utia.cas.cz/separaty/2023/E/mesiar-0576148.pdf
source
url https://www.mdpi.com/2073-8994/14/12/2667
cas_special
abstract (eng) By using a class of aggregation control functions, we introduce the concept of multiple-HU-OS1-stability and get an optimum approximation for a nonlinear single fractional differential equation (NS-ABC-FDE) with a Mittag-Leffler kernel. We apply an alternative fixed-point theorem to prove the existence of a unique solution and the multiple-HU-OS1-stability for the NS-ABC-FDE in the symmetric matrix-valued FBS. Finally, with an example, we show the application of the obtained results.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2024
num_of_auth 4
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0346453
confidential S
article_num 2667
mrcbC86 n.a. Article Multidisciplinary Sciences
mrcbC91 A
mrcbT16-e MULTIDISCIPLINARYSCIENCES
mrcbT16-j 0.406
mrcbT16-s 0.483
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2022
mrcbU14 85144846444 SCOPUS
mrcbU24 PUBMED
mrcbU34 000903156200001 WOS
mrcbU63 cav_un_epca*0430743 Symmetry-Basel 2073-8994 2073-8994 Roč. 14 č. 12 2022 MDPI ONLINE