bibtype |
J -
Journal Article
|
ARLID |
0576148 |
utime |
20240903115334.3 |
mtime |
20231005235959.9 |
SCOPUS |
85144846444 |
WOS |
000903156200001 |
DOI |
10.3390/sym14122667 |
title
(primary) (eng) |
New Stability Results of an ABC Fractional Differential Equation in the Symmetric Matrix-Valued FBS |
specification |
page_count |
16 s. |
media_type |
E |
|
serial |
ARLID |
cav_un_epca*0430743 |
ISSN |
2073-8994 |
title
|
Symmetry-Basel |
volume_id |
14 |
publisher |
|
|
keyword |
stability analysis |
keyword |
aggregation function |
keyword |
control function |
keyword |
fractional differential equations |
keyword |
fuzzy sets |
keyword |
ixed point |
author
(primary) |
ARLID |
cav_un_auth*0455747 |
name1 |
Eidinejad |
name2 |
Z. |
country |
IR |
share |
25 |
|
author
|
ARLID |
cav_un_auth*0434048 |
name1 |
Saadati |
name2 |
R. |
country |
IR |
share |
25 |
|
author
|
ARLID |
cav_un_auth*0101163 |
name1 |
Mesiar |
name2 |
Radko |
institution |
UTIA-B |
full_dept (cz) |
Ekonometrie |
full_dept |
Department of Econometrics |
department (cz) |
E |
department |
E |
full_dept |
Department of Econometrics |
share |
25 |
garant |
K |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0455888 |
name1 |
Li |
name2 |
Ch. |
country |
CA |
share |
25 |
|
source |
|
source |
|
cas_special |
abstract
(eng) |
By using a class of aggregation control functions, we introduce the concept of multiple-HU-OS1-stability and get an optimum approximation for a nonlinear single fractional differential equation (NS-ABC-FDE) with a Mittag-Leffler kernel. We apply an alternative fixed-point theorem to prove the existence of a unique solution and the multiple-HU-OS1-stability for the NS-ABC-FDE in the symmetric matrix-valued FBS. Finally, with an example, we show the application of the obtained results. |
result_subspec |
WOS |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10101 |
reportyear |
2024 |
num_of_auth |
4 |
inst_support |
RVO:67985556 |
permalink |
https://hdl.handle.net/11104/0346453 |
confidential |
S |
article_num |
2667 |
mrcbC86 |
n.a. Article Multidisciplinary Sciences |
mrcbC91 |
A |
mrcbT16-e |
MULTIDISCIPLINARYSCIENCES |
mrcbT16-j |
0.406 |
mrcbT16-s |
0.483 |
mrcbT16-D |
Q4 |
mrcbT16-E |
Q3 |
arlyear |
2022 |
mrcbU14 |
85144846444 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
000903156200001 WOS |
mrcbU63 |
cav_un_epca*0430743 Symmetry-Basel 2073-8994 2073-8994 Roč. 14 č. 12 2022 MDPI ONLINE |
|