bibtype J - Journal Article
ARLID 0576153
utime 20240402214505.9
mtime 20231005235959.9
SCOPUS 85161292402
WOS 001016582600001
DOI 10.1016/j.fss.2023.108577
title (primary) (eng) On the coincidence of the pan-integral and the Choquet integral
specification
page_count 9 s.
media_type P
serial
ARLID cav_un_epca*0256642
ISSN 0165-0114
title Fuzzy Sets and Systems
volume_id 467
publisher
name Elsevier
keyword monotone measure
keyword (M)-property
keyword weak (M)-property
keyword Choquet integral
keyword Pan integral
author (primary)
ARLID cav_un_auth*0348640
name1 Li
name2 J.
country CN
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 25
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0258953
name1 Ouyang
name2 Y.
country CN
garant K
author
ARLID cav_un_auth*0302586
name1 Wu
name2 L.
country CN
source
url http://library.utia.cas.cz/separaty/2023/E/mesiar-0576153.pdf
source
url https://www.sciencedirect.com/science/article/pii/S016501142300218X?via%3Dihub
cas_special
abstract (eng) We introduce the concept of weak (M)-property of a monotone measure and prove that this condition is not only sufficient, but also necessary for the coincidence of the pan-integral and the Choquet integral on monotone measure spaces. The previous results we obtained are substantially improved. An open problem concerning the weak (M)-property is raised.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2024
num_of_auth 4
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0346455
confidential S
article_num 08577
mrcbC91 C
mrcbT16-e COMPUTERSCIENCETHEORYMETHODS|MATHEMATICSAPPLIED|STATISTICSPROBABILITY
mrcbT16-j 0.645
mrcbT16-s 1.009
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2023
mrcbU14 85161292402 SCOPUS
mrcbU24 PUBMED
mrcbU34 001016582600001 WOS
mrcbU63 cav_un_epca*0256642 Fuzzy Sets and Systems 467 1 2023 0165-0114 1872-6801 Elsevier