bibtype C - Conference Paper (international conference)
ARLID 0576517
utime 20240402214531.2
mtime 20231017235959.9
title (primary) (eng) On Open Problems Associated with Conditioning in the Dempster-Shafer Belief Function Theory
specification
page_count 10 s.
media_type E
serial
ARLID cav_un_epca*0576516
title Proceedings of the 23rd Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty
page_num 1-10
publisher
place Osaka, Japan
name Osaka Metropolitan University
year 2023
editor
name1 Yoshifumi
name2 Kusunoki
editor
name1 Václav
name2 Kratochvíl
editor
name1 Masahiro
name2 Inuiguchi
editor
name1 Ondřej
name2 Čepek
keyword belief functions
keyword conditioning
keyword composition
keyword conditional independence
author (primary)
ARLID cav_un_auth*0101118
name1 Jiroušek
name2 Radim
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0216188
name1 Kratochvíl
name2 Václav
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0275452
name1 Shenoy
name2 P. P.
country US
source
source_type PDF dokument
url http://library.utia.cas.cz/separaty/2023/MTR/kratochvil-0576517.pdf
cas_special
project
project_id GA21-07494S
agency GA ČR
country CZ
ARLID cav_un_auth*0430801
abstract (eng) As in probability theory, graphical and compositional models in the Dempster-Shafer (D-S) belief function theory handle multidimensional belief functions applied to support inference for practical problems. Both types of models represent multidimensional belief functions using their low-dimensional marginals. In the case of graphical models, these marginals are usually conditionals, for compositional models, they are unconditional. Nevertheless, one must introduce some conditioning to compose unconditional belief functions and avoid double-counting knowledge. Thus, conditioning is crucial in processing multidimensional compositional models for belief functions.\n\nThis paper summarizes some important open problems, the solution of which should enable a trouble-free design of computational processes employing D-S belief functions in AI. For some of them, we discuss possible solutions. The problems considered in this paper are of two types. There are still some gaps that should be filled to get a mathematically consistent uncertainty theory. Other problems concern the computational tractability of procedures arising from the super-exponential growth of the space and time complexity of the designed algorithms.
action
ARLID cav_un_auth*0456493
name Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty 20232 /23./
dates 20230916
mrcbC20-s 20230920
place Matsuyama
country JP
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2024
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0346458
confidential S
arlyear 2023
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU56 PDF dokument
mrcbU63 cav_un_epca*0576516 Proceedings of the 23rd Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty Osaka Metropolitan University 2023 Osaka, Japan 1 10
mrcbU67 Yoshifumi Kusunoki 340
mrcbU67 Václav Kratochvíl 340
mrcbU67 Masahiro Inuiguchi 340
mrcbU67 Ondřej Čepek 340