bibtype J - Journal Article
ARLID 0577699
utime 20240402214700.1
mtime 20231107235959.9
SCOPUS 85162955071
WOS 001013279000001
DOI 10.1002/mma.9486
title (primary) (eng) A nonlinear fractional partial integro-differential equation with nonlocal initial value conditions
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0257224
ISSN 0170-4214
title Mathematical Methods in the Applied Sciences
volume_id 46
volume 16 (2023)
page_num 17010-17019
publisher
name Wiley
keyword Babenko's approach
keyword Banach's contractive principle
keyword multivariate Mittag–Leffler function
keyword nonlinearpartial integro-differential equation
author (primary)
ARLID cav_un_auth*0455888
name1 Li
name2 Ch.
country CA
author
ARLID cav_un_auth*0457625
name1 Saadaty
name2 R.
country IR
share 20
garant K
author
ARLID cav_un_auth*0457626
name1 O'Regan
name2 D.
country IE
share 20
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 20
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0457627
name1 Hrytsenko
name2 A.
country CA
share 20
source
url http://library.utia.cas.cz/separaty/2023/E/mesiar-0577699.pdf
source
url https://onlinelibrary.wiley.com/doi/10.1002/mma.9486
cas_special
abstract (eng) In this work, we study a new nonlinear partial integro-differential equation withnonlocal initial value conditions and investigate the solutions of this equation.By considering an equivalent implicit integral equation via series, we provethe uniqueness of solutions of the equation by Babenko's approach, Banach'scontraction principle, and the multivariable Mittag–Leffler function. We alsodemonstrate the application of our key theorem with an illustrative example.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2024
num_of_auth 5
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0347643
confidential S
mrcbC91 A
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 0.47
mrcbT16-s 0.607
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2023
mrcbU14 85162955071 SCOPUS
mrcbU24 PUBMED
mrcbU34 001013279000001 WOS
mrcbU63 cav_un_epca*0257224 Mathematical Methods in the Applied Sciences Roč. 46 č. 16 2023 17010 17019 0170-4214 1099-1476 Wiley