bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0578508 |
utime |
20240402214804.9 |
mtime |
20231124235959.9 |
title
(primary) (eng) |
H-NeXt: The next step towards roto-translation invariant networks |
specification |
page_count |
14 s. |
media_type |
E |
|
serial |
ARLID |
cav_un_epca*0578507 |
title
|
34th British Machine Vision Conference 2023 |
page_num |
1-14 |
publisher |
place |
Aberdeen |
name |
BMVA |
year |
2023 |
|
|
keyword |
H-NeXT |
keyword |
robustness to unseen deformations |
keyword |
parameter-efficient roto-translation invariant network |
keyword |
classification on unaugmented training set |
author
(primary) |
ARLID |
cav_un_auth*0438860 |
name1 |
Karella |
name2 |
Tomáš |
institution |
UTIA-B |
full_dept (cz) |
Zpracování obrazové informace |
full_dept (eng) |
Department of Image Processing |
department (cz) |
ZOI |
department (eng) |
ZOI |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101209 |
name1 |
Šroubek |
name2 |
Filip |
institution |
UTIA-B |
full_dept (cz) |
Zpracování obrazové informace |
full_dept |
Department of Image Processing |
department (cz) |
ZOI |
department |
ZOI |
full_dept |
Department of Image Processing |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0254045 |
name1 |
Blažek |
name2 |
Jan |
institution |
UTIA-B |
full_dept (cz) |
Zpracování obrazové informace |
full_dept |
Department of Image Processing |
department (cz) |
ZOI |
department |
ZOI |
full_dept |
Department of Image Processing |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101087 |
name1 |
Flusser |
name2 |
Jan |
institution |
UTIA-B |
full_dept (cz) |
Zpracování obrazové informace |
full_dept |
Department of Image Processing |
department (cz) |
ZOI |
department |
ZOI |
full_dept |
Department of Image Processing |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0457087 |
name1 |
Košík |
name2 |
Václav |
institution |
UTIA-B |
full_dept (cz) |
Zpracování obrazové informace |
full_dept |
Department of Image Processing |
department (cz) |
ZOI |
department |
ZOI |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GA21-03921S |
agency |
GA ČR |
ARLID |
cav_un_auth*0412209 |
|
abstract
(eng) |
The widespread popularity of equivariant networks underscores the significance of parameter efficient models and effective use of training data. At a time when robustness to unseen deformations is becoming increasingly important, we present H-NeXt, which bridges the gap between equivariance and invariance. H-NeXt is a parameter-efficient roto-translation invariant network that is trained without a single augmented image in the training set. Our network comprises three components: an equivariant backbone for learning roto-translation independent features, an invariant pooling layer for discarding roto-translation information, and a classification layer. H-NeXt outperforms the state of the art in classification on unaugmented training sets and augmented test sets of MNIST and CIFAR-10 |
action |
ARLID |
cav_un_auth*0458470 |
name |
British Machine Vision Conference 2023 /34./ |
dates |
20231120 |
mrcbC20-s |
20231124 |
place |
Aberdeen |
country |
GB |
|
RIV |
JD |
FORD0 |
20000 |
FORD1 |
20200 |
FORD2 |
20206 |
reportyear |
2024 |
num_of_auth |
5 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
permalink |
https://hdl.handle.net/11104/0347650 |
confidential |
S |
arlyear |
2023 |
mrcbU14 |
SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
WOS |
mrcbU63 |
cav_un_epca*0578507 34th British Machine Vision Conference 2023 BMVA 2023 Aberdeen 1 14 |
|