bibtype C - Conference Paper (international conference)
ARLID 0578508
utime 20240402214804.9
mtime 20231124235959.9
title (primary) (eng) H-NeXt: The next step towards roto-translation invariant networks
specification
page_count 14 s.
media_type E
serial
ARLID cav_un_epca*0578507
title 34th British Machine Vision Conference 2023
page_num 1-14
publisher
place Aberdeen
name BMVA
year 2023
keyword H-NeXT
keyword robustness to unseen deformations
keyword parameter-efficient roto-translation invariant network
keyword classification on unaugmented training set
author (primary)
ARLID cav_un_auth*0438860
name1 Karella
name2 Tomáš
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0254045
name1 Blažek
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101087
name1 Flusser
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0457087
name1 Košík
name2 Václav
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2023/ZOI/karella-0578508.pdf
cas_special
project
project_id GA21-03921S
agency GA ČR
ARLID cav_un_auth*0412209
abstract (eng) The widespread popularity of equivariant networks underscores the significance of parameter efficient models and effective use of training data. At a time when robustness to unseen deformations is becoming increasingly important, we present H-NeXt, which bridges the gap between equivariance and invariance. H-NeXt is a parameter-efficient roto-translation invariant network that is trained without a single augmented image in the training set. Our network comprises three components: an equivariant backbone for learning roto-translation independent features, an invariant pooling layer for discarding roto-translation information, and a classification layer. H-NeXt outperforms the state of the art in classification on unaugmented training sets and augmented test sets of MNIST and CIFAR-10
action
ARLID cav_un_auth*0458470
name British Machine Vision Conference 2023 /34./
dates 20231120
mrcbC20-s 20231124
place Aberdeen
country GB
RIV JD
FORD0 20000
FORD1 20200
FORD2 20206
reportyear 2024
num_of_auth 5
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0347650
confidential S
arlyear 2023
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0578507 34th British Machine Vision Conference 2023 BMVA 2023 Aberdeen 1 14