bibtype C - Conference Paper (international conference)
ARLID 0579519
utime 20240402214918.1
mtime 20231214235959.9
title (primary) (eng) Numerical minimization of energy functionals in continuum mechanics using hp-FEM in MATLAB
specification
page_count 3 s.
media_type E
serial
ARLID cav_un_epca*0577231
ISBN 978-80-261-1177-1
title Computational mechanics 2023. Proceedings of computational mechanics 2023
page_num 130-132
publisher
place Plzeň
name University of West Bohemia
year 2023
editor
name1 Adámek
name2 V.
editor
name1 Jonášová
name2 A.
editor
name1 Plánička
name2 S.
keyword hp-FEM
keyword energy functionals
keyword numerical minimization
author (primary)
ARLID cav_un_auth*0459832
name1 Moskovka
name2 Alexej
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0255186
name1 Frost
name2 Miroslav
institution UT-L
full_dept (cz) D 5 - Ultrazvukové metody
full_dept D 5 - Ultrasonic Methods
full_dept D5 – Ultrasonic Methods
country CZ
fullinstit Ústav termomechaniky AV ČR, v. v. i.
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://compmech.kme.zcu.cz/download/proceedings/CM2023_Conference_Proceedings.pdf
cas_special
project
project_id GA22-20181S
agency GA ČR
country CZ
ARLID cav_un_auth*0435651
project
project_id GF21-06569K
agency GA ČR
ARLID cav_un_auth*0412957
abstract (eng) Many processes in mechanics and thermodynamics can be formulated as a minimization of a particular energy functional. The finite element method can be used for an approximation of such functionals in a finite-dimensional subspace. Consequently, the numerical minimization methods (such as quasi-Newton and trust region) can be used to find a minimum of the functional. Vectorization techniques used for the evaluation of the energy together with the assembly of discrete energy gradient and Hessian sparsity are crucial for evaluation times. A particular model simulating the deformation of a Neo-Hookean solid body is solved in this contribution by minimizing the corresponding energy functional. We implement both P1 and rectangular hp-finite elements and compare their efficiency with respect to degrees of freedom and evaluation times.
action
ARLID cav_un_auth*0457147
name Computational mechanics 2023 /38./
dates 20231023
mrcbC20-s 20231025
place Srní
country CZ
RIV BC
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2024
num_of_auth 3
mrcbC47 UTIA-B 10000 10100 10101
mrcbC52 4 A 4a 20231215090811.6
presentation_type PR
mrcbC55 UTIA-B BA
inst_support RVO:61388998
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0349460
cooperation
ARLID cav_un_auth*0296535
name Ústav teorie informace a automatizace AV ČR
institution ÚTIA AV ČR
country CZ
confidential S
arlyear 2023
mrcbTft \nSoubory v repozitáři: 0579519_Numerical minimization of energy functionals_Moskovka_CM_2023.pdf
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0577231 Computational mechanics 2023. Proceedings of computational mechanics 2023 University of West Bohemia 2023 Plzeň 130 132 978-80-261-1177-1
mrcbU67 Adámek V. 340
mrcbU67 Jonášová A. 340
mrcbU67 Plánička S. 340