bibtype J - Journal Article
ARLID 0579645
utime 20250324101518.3
mtime 20231218235959.9
SCOPUS 85173461556
WOS 001074740400001
DOI 10.1017/prm.2023.101
title (primary) (eng) Nonlinear elasticity with vanishing nonlocal self-repulsion
specification
page_count 18 s.
media_type P
serial
ARLID cav_un_epca*0257502
ISSN 0308-2105
title Proceedings of the Royal Society of Edinburgh. A - Mathematics
publisher
name Royal Society of Edinburgh
keyword nonlinear elasticity
keyword local injectivity
keyword global injectivity
keyword Ciarlet–Nečas condition
keyword nonlocal self-repulsion
keyword Sobolev–Slobodeckii seminorm
author (primary)
ARLID cav_un_auth*0359168
name1 Krömer
name2 Stefan
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
country DE
share 50
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0460023
name1 Reiter
name2 P.
country DE
share 50
garant K
source
url http://library.utia.cas.cz/separaty/2024/MTR/kromer-0579645.pdf
source
url https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/abs/nonlinear-elasticity-with-vanishing-nonlocal-selfrepulsion/D03EAE49B0E7654D462B27DDC625C8F5
cas_special
project
project_id GF21-06569K
agency GA ČR
ARLID cav_un_auth*0412957
project
project_id GF19-29646L
agency GA ČR
country CZ
ARLID cav_un_auth*0385134
abstract (eng) We prove that for nonlinear elastic energies with strong enough energetic control of the outer distortion of admissible deformations, almost everywhere global invertibility as constraint can be obtained in the Γ -limit of the elastic energy with an added nonlocal self-repulsion term with asymptocially vanishing coefficient. The self-repulsion term considered here formally coincides with a Sobolev–Slobodeckiĭ seminorm of the inverse deformation. Variants near the boundary or on the surface of the domain are also studied.\n
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2026
num_of_auth 2
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0350577
cooperation
ARLID cav_un_auth*0460025
name Technische Universität Chemnitz
institution TU Chemnitz
country DE
confidential S
mrcbC91 C
mrcbT16-e MATHEMATICS|MATHEMATICSAPPLIED
mrcbT16-j 0.885
mrcbT16-s 1.148
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2025
mrcbU14 85173461556 SCOPUS
mrcbU24 PUBMED
mrcbU34 001074740400001 WOS
mrcbU63 cav_un_epca*0257502 Proceedings of the Royal Society of Edinburgh. A - Mathematics 0308-2105 1473-7124 available online 2025 Royal Society of Edinburgh