bibtype J - Journal Article
ARLID 0581659
utime 20250207140318.2
mtime 20240119235959.9
SCOPUS 85183570255
WOS 001170311200001
DOI 10.1016/j.frl.2024.105003
title (primary) (eng) Fan charts in era of big data and learning
specification
page_count 7 s.
media_type P
serial
ARLID cav_un_epca*0361997
ISSN 1544-6123
title Finance Research Letters
volume_id 61
publisher
name Elsevier
keyword Fan charts
keyword Probabilistic forecasting
keyword Machine learning
author (primary)
ARLID cav_un_auth*0242028
name1 Baruník
name2 Jozef
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
full_dept Department of Econometrics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0462008
name1 Hanus
name2 Luboš
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://www.sciencedirect.com/science/article/pii/S1544612324000333?dgcid=author
source
url http://library.utia.cas.cz/separaty/2023/E/barunik-0581659.pdf
cas_special
project
project_id GX19-28231X
agency GA ČR
country CZ
ARLID cav_un_auth*0385135
abstract (eng) We propose how to construct big data-driven macroeconomic fan charts, using machine learning methods to reflect the information in 216 relevant economic variables. Such data-rich fan charts do not rely on restrictive model assumptions and allow the exploration of non-Gaussian, asymmetric, heavy-tailed data and their non-linear interactions. By allowing complex patterns to be learned from a data-rich environment, our fan charts are useful for decision making that depends on the uncertainty of a potentially large number of economic variables — most public policy issues.
result_subspec WOS
RIV AH
FORD0 50000
FORD1 50200
FORD2 50202
reportyear 2025
num_of_auth 2
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0349774
confidential S
article_num 105003
mrcbC91 C
mrcbT16-e BUSINESS.FINANCE
mrcbT16-f 7.2
mrcbT16-g 1.2
mrcbT16-h 2.5
mrcbT16-i 0.02845
mrcbT16-j 1.076
mrcbT16-k 28265
mrcbT16-q 123
mrcbT16-s 1.711
mrcbT16-y 26.94
mrcbT16-x 8.12
mrcbT16-3 22462
mrcbT16-4 Q1
mrcbT16-5 5.800
mrcbT16-6 1615
mrcbT16-7 Q1
mrcbT16-C 95.2
mrcbT16-M 2.13
mrcbT16-N Q1
mrcbT16-P 95.2
arlyear 2024
mrcbU14 85183570255 SCOPUS
mrcbU24 PUBMED
mrcbU34 001170311200001 WOS
mrcbU63 cav_un_epca*0361997 Finance Research Letters 1544-6123 1544-6131 Roč. 61 č. 1 2024 Elsevier PRINT