bibtype |
J -
Journal Article
|
ARLID |
0581872 |
utime |
20250131152608.9 |
mtime |
20240125235959.9 |
SCOPUS |
85179724837 |
WOS |
001124449100003 |
DOI |
10.1007/s00158-023-03715-5 |
title
(primary) (eng) |
Global weight optimization of frame structures with polynomial programming |
specification |
page_count |
10 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0255735 |
ISSN |
1615-147X |
title
|
Structural and Multidisciplinary Optimization |
volume_id |
66 |
|
keyword |
Topology optimization |
keyword |
Frame structures |
keyword |
Semidefinite programming |
keyword |
Polynomial optimization |
keyword |
Global optimality |
author
(primary) |
ARLID |
cav_un_auth*0454762 |
name1 |
Tyburec |
name2 |
Marek |
institution |
UTIA-B |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept (eng) |
Department of Decision Making Theory |
department (cz) |
MTR |
department (eng) |
MTR |
country |
CZ |
share |
50 |
garant |
K |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101131 |
name1 |
Kočvara |
name2 |
Michal |
institution |
UTIA-B |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
share |
30 |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101142 |
name1 |
Kružík |
name2 |
Martin |
institution |
UTIA-B |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
share |
20 |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
source |
|
cas_special |
project |
project_id |
GA22-15524S |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0447354 |
|
project |
project_id |
8J20FR019 |
agency |
GA MŠk |
ARLID |
cav_un_auth*0397550 |
|
project |
project_id |
GF21-06569K |
agency |
GA ČR |
ARLID |
cav_un_auth*0412957 |
|
abstract
(eng) |
Weight optimization of frame structures with continuous cross-section parametrization is a challenging non-convex problem that has traditionally been solved by local optimization techniques. Here, we exploit its inherent semi-algebraic structure and adopt the Lasserre hierarchy of relaxations to compute the global minimizers. While this hierarchy generates a natural sequence of lower bounds, we show, under mild assumptions, how to project the relaxed solutions onto the feasible set of the original problem and thus construct feasible upper bounds. Based on these bounds, we develop a simple sufficient condition of global Ɛ-optimality. Finally, we prove that the optimality gap converges to zero in the limit if the set of global minimizers is convex. We demonstrate these results by means of two academic illustrations. |
result_subspec |
WOS |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10102 |
reportyear |
2024 |
num_of_auth |
3 |
inst_support |
RVO:67985556 |
permalink |
https://hdl.handle.net/11104/0350579 |
cooperation |
ARLID |
cav_un_auth*0300409 |
name |
České vysoké učení technické v Praze, Fakulta stavební |
institution |
ČVUT Praha, FSv |
country |
CZ |
|
cooperation |
ARLID |
cav_un_auth*0297783 |
name |
University of Birmingham |
country |
GB |
|
confidential |
S |
article_num |
257 |
mrcbC91 |
C |
mrcbT16-e |
COMPUTERSCIENCEINTERDISCIPLINARYAPPLICATIONS|ENGINEERINGMULTIDISCIPLINARY|MECHANICS |
mrcbT16-j |
0.958 |
mrcbT16-s |
1.181 |
mrcbT16-D |
Q2 |
mrcbT16-E |
Q2 |
arlyear |
2023 |
mrcbU14 |
85179724837 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
001124449100003 WOS |
mrcbU63 |
cav_un_epca*0255735 Structural and Multidisciplinary Optimization 66 12 2023 1615-147X 1615-1488 |
|