bibtype J - Journal Article
ARLID 0581872
utime 20250131152608.9
mtime 20240125235959.9
SCOPUS 85179724837
WOS 001124449100003
DOI 10.1007/s00158-023-03715-5
title (primary) (eng) Global weight optimization of frame structures with polynomial programming
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0255735
ISSN 1615-147X
title Structural and Multidisciplinary Optimization
volume_id 66
keyword Topology optimization
keyword Frame structures
keyword Semidefinite programming
keyword Polynomial optimization
keyword Global optimality
author (primary)
ARLID cav_un_auth*0454762
name1 Tyburec
name2 Marek
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
country CZ
share 50
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101131
name1 Kočvara
name2 Michal
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
share 30
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101142
name1 Kružík
name2 Martin
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
share 20
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2024/MTR/tyburec-0581872.pdf
source
url https://link.springer.com/article/10.1007/s00158-023-03715-5
cas_special
project
project_id GA22-15524S
agency GA ČR
country CZ
ARLID cav_un_auth*0447354
project
project_id 8J20FR019
agency GA MŠk
ARLID cav_un_auth*0397550
project
project_id GF21-06569K
agency GA ČR
ARLID cav_un_auth*0412957
abstract (eng) Weight optimization of frame structures with continuous cross-section parametrization is a challenging non-convex problem that has traditionally been solved by local optimization techniques. Here, we exploit its inherent semi-algebraic structure and adopt the Lasserre hierarchy of relaxations to compute the global minimizers. While this hierarchy generates a natural sequence of lower bounds, we show, under mild assumptions, how to project the relaxed solutions onto the feasible set of the original problem and thus construct feasible upper bounds. Based on these bounds, we develop a simple sufficient condition of global Ɛ-optimality. Finally, we prove that the optimality gap converges to zero in the limit if the set of global minimizers is convex. We demonstrate these results by means of two academic illustrations.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2024
num_of_auth 3
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0350579
cooperation
ARLID cav_un_auth*0300409
name České vysoké učení technické v Praze, Fakulta stavební
institution ČVUT Praha, FSv
country CZ
cooperation
ARLID cav_un_auth*0297783
name University of Birmingham
country GB
confidential S
article_num 257
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEINTERDISCIPLINARYAPPLICATIONS|ENGINEERINGMULTIDISCIPLINARY|MECHANICS
mrcbT16-j 0.958
mrcbT16-s 1.181
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2023
mrcbU14 85179724837 SCOPUS
mrcbU24 PUBMED
mrcbU34 001124449100003 WOS
mrcbU63 cav_un_epca*0255735 Structural and Multidisciplinary Optimization 66 12 2023 1615-147X 1615-1488