bibtype J - Journal Article
ARLID 0582065
utime 20240304105819.6
mtime 20240130235959.9
SCOPUS 85141180581
WOS 000877446700001
DOI 10.1007/s11118-022-10051-8
title (primary) (eng) Besov-Orlicz Path Regularity of Non-Gaussian Processes
specification
page_count 33 s.
media_type P
serial
ARLID cav_un_epca*0254775
ISSN 0926-2601
title Potential Analysis
volume_id 60
volume 1 (2024)
page_num 307-339
publisher
name Springer
keyword Besov-Orlicz space
keyword Hermite process
keyword multiple Wiener-Ito integral
keyword path regularity
author (primary)
ARLID cav_un_auth*0356972
name1 Čoupek
name2 P.
country CZ
author
ARLID cav_un_auth*0260292
name1 Ondreját
name2 Martin
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2024/SI/ondrejat-0582065.pdf
source
url https://link.springer.com/article/10.1007/s11118-022-10051-8
cas_special
project
project_id GA19-07140S
agency GA ČR
country CZ
ARLID cav_un_auth*0385132
abstract (eng) Besov-Orlicz regularity of sample paths of stochastic processes that are represented by multiple integrals of order n is treated. Sufficient conditions for the processes to have paths in the exponential Besov-Orlicz spaces are provided. These results are an extension of what is known for scalar Gaussian stochastic processes to stochastic processes in an arbitrary finite Wiener chaos. As an application, the Besov-Orlicz path regularity of fractionally filtered Hermite processes is studied and some new path properties are obtained even for fractional Brownian motions.
reportyear 2025
RIV BB
result_subspec WOS
FORD0 10000
FORD1 10100
FORD2 10103
num_of_auth 2
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0350582
confidential S
mrcbC91 C
mrcbT16-e MATHEMATICS
mrcbT16-j 0.892
mrcbT16-D Q1
arlyear 2024
mrcbU14 85141180581 SCOPUS
mrcbU24 PUBMED
mrcbU34 000877446700001 WOS
mrcbU63 cav_un_epca*0254775 Potential Analysis 60 1 2024 307 339 0926-2601 1572-929X Springer