bibtype C - Conference Paper (international conference)
ARLID 0583574
utime 20240402215301.5
mtime 20240305235959.9
SCOPUS 85174447437
WOS 001155257400031
DOI 10.1007/978-3-031-42508-0_31
title (primary) (eng) On the Bayesian Interpretation of Penalized Statistical Estimators
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0579679
ISBN 978-3-031-42507-3
title Artificial Intelligence and Soft Computing. 22nd International Conference, ICAISC 2023, Proceedings, Part 2
page_num 343-352
publisher
place Cham
name Springer
year 2023
editor
name1 Rutkowski
name2 L.
editor
name1 Scherer
name2 R.
editor
name1 Korytkowski
name2 M.
editor
name1 Pedrycz
name2 W.
editor
name1 Tadeusiewicz
name2 R.
editor
name1 Zurada
name2 J. M.
keyword Bayesian estimation
keyword regularization
keyword penalization
keyword robustness
keyword regression
author (primary)
ARLID cav_un_auth*0345793
name1 Kalina
name2 Jan
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0353498
name1 Peštová
name2 B.
country CZ
source
url http://library.utia.cas.cz/separaty/2023/SI/kalina-0583574.pdf
cas_special
project
project_id GA21-05325S
agency GA ČR
ARLID cav_un_auth*0409039
abstract (eng) The aim of this work is to search for intuitive interpretations of penalized statistical estimators. Penalized estimates of the parameters of three models obtained by Bayesian reasoning are explained here to correspond to the intuition. First, the paper considers Bayesian estimates of the mean and covariance matrix for the multivariate normal distribution. Second, a connection of a robust regularized version of Mahalanobis distance with Bayesian estimation is discussed. Third, regularization networks, which represent a common nonparametric tool for regression modeling, are presented as Bayesian methods as well. On the whole, selected important multivariate and/or regression models are considered and novel interpretations are formulated.
action
ARLID cav_un_auth*0460088
name ICAISC 2023: International Conference on Artificial Intelligence and Soft Computing /22./
dates 20230718
mrcbC20-s 20230722
place Zakopane
country PL
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2024
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0351579
confidential S
arlyear 2023
mrcbU14 85174447437 SCOPUS
mrcbU24 PUBMED
mrcbU34 001155257400031 WOS
mrcbU63 cav_un_epca*0579679 Artificial Intelligence and Soft Computing. 22nd International Conference, ICAISC 2023, Proceedings, Part 2 Springer 2023 Cham 343 352 978-3-031-42507-3 Lecture Notes in Computer Science 14126
mrcbU67 Rutkowski L. 340
mrcbU67 Scherer R. 340
mrcbU67 Korytkowski M. 340
mrcbU67 Pedrycz W. 340
mrcbU67 Tadeusiewicz R. 340
mrcbU67 Zurada J. M. 340