bibtype J - Journal Article
ARLID 0583584
utime 20240527123805.4
mtime 20240305235959.9
SCOPUS 85081789945
WOS 000517823000002
DOI 10.2478/msr-2020-0002
title (primary) (eng) On Robust Estimation of Error Variance in (Highly) Robust Regression
specification
page_count 9 s.
media_type P
serial
ARLID cav_un_epca*0294890
ISSN 1335-8871
title Measurement Science Review
volume_id 20
volume 1 (2020)
page_num 6-14
publisher
name Sciendo
keyword high robustness
keyword simulation
keyword least weighted squares
keyword variance of errors
keyword outliers
keyword robust regression
author (primary)
ARLID cav_un_auth*0345793
name1 Kalina
name2 Jan
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0387590
name1 Tichavský
name2 J.
country CZ
source
url https://sciendo.com/article/10.2478/msr-2020-0002
source
url http://library.utia.cas.cz/separaty/2020/SI/kalina-0583584.pdf
cas_special
project
project_id GA19-05704S
agency GA ČR
country CZ
ARLID cav_un_auth*0375756
project
project_id GA17-07384S
agency GA ČR
ARLID cav_un_auth*0345381
abstract (eng) The linear regression model requires robust estimation of parameters, if the measured data are contaminated by outlying measurements (outliers). While a number of robust estimators (i.e. resistant to outliers) have been proposed, this paper is focused on estimating the variance of the random regression errors. We particularly focus on the least weighted squares estimator, for which we review its properties and propose new weighting schemes together with corresponding estimates for the variance of disturbances. An illustrative example revealing the idea of the estimator to down-weight individual measurements is presented. Further, two numerical simulations presented here allow to compare various estimators. They verify the theoretical results for the least weighted squares to be meaningful. MM-estimators turn out to yield the best results in the simulations in terms of both accuracy and precision. The least weighted squares (with suitable weights) remain only slightly behind in terms of the mean square error and are able to outperform the much more popular least trimmed squares estimator, especially for smaller sample sizes.
result_subspec WOS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2024
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0351590
confidential S
mrcbC91 A
mrcbT16-e INSTRUMENTSINSTRUMENTATION
mrcbT16-i 0.00040
mrcbT16-j 0.208
mrcbT16-s 0.301
mrcbT16-B 4.528
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2020
mrcbU14 85081789945 SCOPUS
mrcbU24 PUBMED
mrcbU34 000517823000002 WOS
mrcbU63 cav_un_epca*0294890 Measurement Science Review Roč. 20 č. 1 2020 6 14 1335-8871 1335-8871 Sciendo