bibtype C - Conference Paper (international conference)
ARLID 0584116
utime 20240402215338.9
mtime 20240313235959.9
SCOPUS 85161449568
DOI 10.1007/978-3-031-30445-3_28
title (primary) (eng) On Minimization of Nonlinear Energies Using FEM in MATLAB
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0584114
ISBN 978-3-031-30444-6
ISSN 0302-9743
title Parallel Processing and Applied Mathematics : 14th International Conference, PPAM 2022
page_num 331-342
publisher
place Cham
name Springer
year 2023
editor
name1 Wyrzykowski
name2 R.
editor
name1 Dongarra
name2 J.
editor
name1 Deelman
name2 E.
editor
name1 Karczewski
name2 K.
keyword minimization
keyword nonlinear energy
keyword finite elements
keyword Ginzburg-Landau model
keyword topology optimization
author (primary)
ARLID cav_un_auth*0410335
name1 Moskovka
name2 A.
country CZ
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0464270
name1 Vohnoutová
name2 M.
country CZ
source
url http://library.utia.cas.cz/separaty/2024/MTR/moskovka-0584116.pdf
cas_special
project
project_id 8J21AT001
agency GA MŠk
ARLID cav_un_auth*0413224
project
project_id GF21-06569K
agency GA ČR
ARLID cav_un_auth*0412957
abstract (eng) Two minimization problems are added to the Moskovka and Valdman MATLAB package (2022): a Ginzburg-Landau (scalar) problem and a topology optimization (both scalar and vector) problem in linear elasticity. Both problems are described as nonlinear energy minimizations that contain the first gradient of the unknown field. Their energy functionals are discretized by finite elements, and the corresponding minima are searched using the trust-region method with a known Hessian sparsity or the Quasi-Newton method.
action
ARLID cav_un_auth*0464801
name International Conference on Parallel Processing and Applied Mathematics (PPAM 2022) /14./
dates 20220911
mrcbC20-s 20220914
place Gdansk
country PL
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2024
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0352092
confidential S
arlyear 2023
mrcbU14 85161449568 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0584114 Parallel Processing and Applied Mathematics : 14th International Conference, PPAM 2022 Springer 2023 Cham 331 342 978-3-031-30444-6 Lecture Notes in Computer Science 13827 0302-9743 1611-3349
mrcbU67 Wyrzykowski R. 340
mrcbU67 Dongarra J. 340
mrcbU67 Deelman E. 340
mrcbU67 Karczewski K. 340