bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0584116 |
utime |
20240402215338.9 |
mtime |
20240313235959.9 |
SCOPUS |
85161449568 |
DOI |
10.1007/978-3-031-30445-3_28 |
title
(primary) (eng) |
On Minimization of Nonlinear Energies Using FEM in MATLAB |
specification |
page_count |
12 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0584114 |
ISBN |
978-3-031-30444-6 |
ISSN |
0302-9743 |
title
|
Parallel Processing and Applied Mathematics : 14th International Conference, PPAM 2022 |
page_num |
331-342 |
publisher |
place |
Cham |
name |
Springer |
year |
2023 |
|
editor |
name1 |
Wyrzykowski |
name2 |
R. |
|
editor |
|
editor |
|
editor |
name1 |
Karczewski |
name2 |
K. |
|
|
keyword |
minimization |
keyword |
nonlinear energy |
keyword |
finite elements |
keyword |
Ginzburg-Landau model |
keyword |
topology optimization |
author
(primary) |
ARLID |
cav_un_auth*0410335 |
name1 |
Moskovka |
name2 |
A. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0292941 |
name1 |
Valdman |
name2 |
Jan |
institution |
UTIA-B |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0464270 |
name1 |
Vohnoutová |
name2 |
M. |
country |
CZ |
|
source |
|
cas_special |
project |
project_id |
8J21AT001 |
agency |
GA MŠk |
ARLID |
cav_un_auth*0413224 |
|
project |
project_id |
GF21-06569K |
agency |
GA ČR |
ARLID |
cav_un_auth*0412957 |
|
abstract
(eng) |
Two minimization problems are added to the Moskovka and Valdman MATLAB package (2022): a Ginzburg-Landau (scalar) problem and a topology optimization (both scalar and vector) problem in linear elasticity. Both problems are described as nonlinear energy minimizations that contain the first gradient of the unknown field. Their energy functionals are discretized by finite elements, and the corresponding minima are searched using the trust-region method with a known Hessian sparsity or the Quasi-Newton method. |
action |
ARLID |
cav_un_auth*0464801 |
name |
International Conference on Parallel Processing and Applied Mathematics (PPAM 2022) /14./ |
dates |
20220911 |
mrcbC20-s |
20220914 |
place |
Gdansk |
country |
PL |
|
RIV |
IN |
FORD0 |
10000 |
FORD1 |
10200 |
FORD2 |
10201 |
reportyear |
2024 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
permalink |
https://hdl.handle.net/11104/0352092 |
confidential |
S |
arlyear |
2023 |
mrcbU14 |
85161449568 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
WOS |
mrcbU63 |
cav_un_epca*0584114 Parallel Processing and Applied Mathematics : 14th International Conference, PPAM 2022 Springer 2023 Cham 331 342 978-3-031-30444-6 Lecture Notes in Computer Science 13827 0302-9743 1611-3349 |
mrcbU67 |
Wyrzykowski R. 340 |
mrcbU67 |
Dongarra J. 340 |
mrcbU67 |
Deelman E. 340 |
mrcbU67 |
Karczewski K. 340 |
|