bibtype C - Conference Paper (international conference)
ARLID 0587093
utime 20240624074649.1
mtime 20240621235959.9
DOI 10.1109/SCSP61506.2024.10552715
title (primary) (eng) Accuracy Comparison of Logistic Regression, Random Forest, and Neural Networks Applied to Real MaaS Data
specification
page_count 5 s.
media_type P
serial
ARLID cav_un_epca*0587092
ISBN 979-8-3503-6096-7
ISSN 2831-5618
title 2024 Smart City Symposium Prague (SCSP)
publisher
place Danvers
name IEEE
year 2024
keyword classification algorithms
keyword data analysis
keyword machine learning
keyword Mobility as a Service
keyword random forests
author (primary)
ARLID cav_un_auth*0452994
name1 Reznychenko
name2 T.
country CZ
author
ARLID cav_un_auth*0383037
name1 Uglickich
name2 Evženie
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2024/ZS/uglickich-0587093.pdf
source
url https://ieeexplore.ieee.org/document/10552715
cas_special
project
project_id 8A21009
agency GA MŠk
ARLID cav_un_auth*0432581
abstract (eng) The paper deals with a comparative analysis of three widely used data analysis methods: logistic regression, random forest, and neural networks. These methods have been evaluated in terms of accuracy, and computational efficiency and applied to different types of data sets, including both simulated and real MaaS data. The study aims to compare the efficiency of each method in classification tasks. The study leads to specific recommendations on which method to use under various circumstances, contributing to the decision-making process in data analysis projects. We have shown that random forests generally provide better accuracy and are resistant to over-training. Neural networks can achieve comparable performance under certain conditions, although at a high computational cost. Logistic regression shows limitations in dealing with complex data structures.
action
ARLID cav_un_auth*0468931
name Smart City Symposium Prague 2024 (SCSP 2024)
dates 20240523
mrcbC20-s 20240524
place Prague
country CZ
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2025
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0354390
mrcbC61 1
confidential S
arlyear 2024
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU56 pdf
mrcbU63 cav_un_epca*0587092 2024 Smart City Symposium Prague (SCSP) IEEE 2024 Danvers 979-8-3503-6096-7 2831-5618 2691-3666