bibtype J - Journal Article
ARLID 0587295
utime 20240903170602.1
mtime 20240701235959.9
WOS 001260088200002
DOI 10.14311/NNW.2024.34.006
title (primary) (eng) 3D Local Crime Type Models Based on Crime Hotspot Detection
specification
page_count 22 s.
media_type P
serial
ARLID cav_un_epca*0290321
ISSN 1210-0552
title Neural Network World
volume_id 34
volume 2 (2024)
page_num 89-110
publisher
name Ústav informatiky AV ČR, v. v. i.
keyword crime location
keyword crime type
keyword cluster analysis
keyword recursive Bayesian mixture estimation
author (primary)
ARLID cav_un_auth*0383037
name1 Uglickich
name2 Evženie
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept (eng) Department of Signal Processing
department (cz) ZS
department (eng) ZS
full_dept Department of Signal Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101167
name1 Nagy
name2 Ivan
institution UTIA-B
full_dept (cz) Zpracování signálů
full_dept Department of Signal Processing
department (cz) ZS
department ZS
full_dept Department of Signal Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2024/ZS/uglickich-0587295.pdf
source
url http://nnw.cz/doi/2024/NNW.2024.34.006.pdf
cas_special
project
project_id 8A21009
agency GA MŠk
ARLID cav_un_auth*0432581
abstract (eng) This paper deals with the analysis of the relationship between locations and types of crime observed in the Czech Republic. Cluster analysis of crime data based on the recursive Bayesian mixture estimation algorithm is used to identify crime hotspots and estimate local models of crime type. The experiments report that the 2D configuration of the algorithm allows the detection of crime hotspots online. The 3D configuration provides 29% more accurate crime type models than 2D clustering and alternative data mining algorithms. For the data set used, it was determined in which crime hotspots the most serious and most frequent types of crime can be expected to occur with the highest probability. The limitation of the study is the artificial support of the 3D clusters by the fully continuous data vector with the recoded values of the crime type. The potential use of the algorithm is expected in online web applications for sharing information on criminal offenses managed by the Police of the Czech Republic with the public and local government entities in the Czech Republic.\n
result_subspec WOS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2025
num_of_auth 2
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0355026
confidential S
mrcbC91 A
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.164
mrcbT16-D Q4
arlyear 2024
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 001260088200002 WOS
mrcbU63 cav_un_epca*0290321 Neural Network World 1210-0552 Roč. 34 č. 2 2024 89 110 Ústav informatiky AV ČR, v. v. i.