bibtype J - Journal Article
ARLID 0587998
utime 20250317090405.2
mtime 20240730235959.9
SCOPUS 85199659812
WOS 001277768400001
DOI 10.3390/en17143555
title (primary) (eng) Modeling and CFD Simulation of Macroalgae Motion within Aerated Tanks: Assessment of Light-Dark Cycle Period
specification
page_count 18 s.
media_type E
serial
ARLID cav_un_epca*0361945
ISSN 1996-1073
title Energies
volume_id 17
publisher
name MDPI
keyword Aerated tanks
keyword Computational fluid dynamics (CFD)
keyword Discrete element method (DEM)
keyword Fluid–structure interaction (FSI)
keyword Light–dark cycles
keyword Macroalgae
keyword Seaweed
author (primary)
ARLID cav_un_auth*0015171
name1 Filip
name2 R.
country CZ
author
ARLID cav_un_auth*0470335
name1 Masaló
name2 I.
country ES
author
ARLID cav_un_auth*0404313
name1 Papáček
name2 Štěpán
institution UTIA-B
full_dept (cz) Teorie řízení
full_dept Department of Control Theory
department (cz)
department TR
country CZ
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2024/TR/papacek-0587998.pdf
source
url https://www.mdpi.com/1996-1073/17/14/3555
cas_special
abstract (eng) Computational techniques can be applied to numerically assess key parameters influencing the biotechnological process to better predict the essential features governing macroalgae growth and nutrient removal in aerated tanks, e.g., integrated into multitrophic aquaculture systems. Recent advances in computational hardware and software, such as the discrete element method (DEM) coupled with computational fluid dynamics (CFDs) codes, have enabled flow simulations in biotechnological systems. Here, we perform CFD-DEM simulations of macroalgae motion within aerated tanks to assess the light–dark cycle period as one of the most critical abiotic conditions governing the growth of photosynthetic organisms. This proof-of-concept study, which deals with the challenging problem of the fluid structure interaction in aerated (bubbled) tanks with a highly flexible solid phase, includes a set of detailed 2D CFD simulations for two types of settings differing in the presence or absence of an inner cylinder assembly. Consequently, corresponding regression models for the cycle period are derived, and the initial hypothesis of the assembly’s beneficial role is confirmed. Eventually, the CFD results are verified using an image processing technique on the laboratory scale tank with Ulva sp. and specific 3D CFD-DEM simulations.
result_subspec WOS
RIV BC
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2025
num_of_auth 3
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0355084
cooperation
ARLID cav_un_auth*0470336
name Centrum výzkumu Řež s.r.o., Hlavní 130, Řež, 25068 Husinec, Czech Republic
country CZ
cooperation
ARLID cav_un_auth*0312136
name Department of Process Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 16000 Prague, Czech Republic
country CZ
cooperation
ARLID cav_un_auth*0470337
name Departament d’Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya BarcelonaTECH, C/Esteve Terrades 8, 08860 Castelldefels, Spain
country ES
confidential S
article_num 3555
mrcbC91 A
mrcbT16-e ENERGYFUELS
mrcbT16-j 0.441
mrcbT16-s 0.651
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2024
mrcbU14 85199659812 SCOPUS
mrcbU24 PUBMED
mrcbU34 001277768400001 WOS
mrcbU56 2,66 MB
mrcbU63 cav_un_epca*0361945 Energies 1996-1073 1996-1073 Roč. 17 č. 14 2024 MDPI online