bibtype A - Abstract
ARLID 0588431
utime 20240909091325.5
mtime 20240813235959.9
title (primary) (eng) Bayesian methods in neural networks for inverse atmospheric modelling
specification
media_type E
serial
ARLID cav_un_epca*0597976
title Stochastic and Physical Monitoring Systems 2024
publisher
place Praha
name CVUT
year 2024
keyword Bayesian methods
keyword mathematical modelling
keyword neural networks
author (primary)
ARLID cav_un_auth*0464277
name1 Brožová
name2 Antonie
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101207
name1 Šmídl
name2 Václav
institution UTIA-B
department AS
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0267768
name1 Tichý
name2 Ondřej
institution UTIA-B
department AS
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2024/AS/brozova-0588431-abstrakt.pdf
source
url https://library.utia.cas.cz/separaty/2024/AS/brozova-0588431-prezentace.pdf
cas_special
project
project_id GA24-10400S
agency GA ČR
country CZ
ARLID cav_un_auth*0464279
abstract (eng) Recovering a source and an amount of an emitted substance from distant measurement is an ill-posed problem. In this contribution, two methods based on Bayes theorem will be compared on a realistic toy problem with microplastics. First of them is a Bayesian neural network pretrained to mimic a lognormal process and second one is hierarchical variational model, where the parameters of the posterior distribution are modeled by a convolutional neural network. Both these approaches allow to incorporate spatial dependency of the locations of the source and offer an estimate of uncertainty to assess the reliability of the method.\n
action
ARLID cav_un_auth*0471752
name Stochastic and Physical Monitoring Systems 2024 (SPMS 2024) /15./
mrcbC20-d 15.
dates 20240620
mrcbC20-s 20240624
place Dobřichovice
country CZ
RIV BC
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2025
num_of_auth 3
presentation_type PO
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0355754
mrcbC61 1
confidential S
arlyear 2024
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0597976 Stochastic and Physical Monitoring Systems 2024 CVUT 2024 Praha