| bibtype |
J -
Journal Article
|
| ARLID |
0588490 |
| utime |
20250317090234.2 |
| mtime |
20240814235959.9 |
| SCOPUS |
85193696710 |
| WOS |
000986340000001 |
| DOI |
10.1017/prm.2023.36 |
| title
(primary) (eng) |
Minimal energy for geometrically nonlinear elastic inclusions in two dimensions |
| specification |
| page_count |
24 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0257502 |
| ISSN |
0308-2105 |
| title
|
Proceedings of the Royal Society of Edinburgh. A - Mathematics |
| volume_id |
154 |
| volume |
3 (2024) |
| page_num |
769-792 |
| publisher |
| name |
Royal Society of Edinburgh |
|
|
| keyword |
Two-well problems |
| keyword |
nonlinear elasticity |
| keyword |
rigidity estimates |
| author
(primary) |
| ARLID |
cav_un_auth*0471276 |
| name1 |
Akramov |
| name2 |
I. |
| country |
DE |
|
| author
|
| ARLID |
cav_un_auth*0471277 |
| name1 |
Knuepfer |
| name2 |
H. |
| country |
DE |
| share |
25 |
|
| author
|
| ARLID |
cav_un_auth*0101142 |
| name1 |
Kružík |
| name2 |
Martin |
| institution |
UTIA-B |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department |
MTR |
| share |
25 |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0471278 |
| name1 |
Rueland |
| name2 |
A. |
| country |
DE |
| share |
25 |
|
| source |
|
| source |
|
| cas_special |
| project |
| project_id |
GF21-06569K |
| agency |
GA ČR |
| ARLID |
cav_un_auth*0412957 |
|
| abstract
(eng) |
We are concerned with a variant of the isoperimetric problem, which in our setting arises in a geometrically nonlinear two-well problem in elasticity. More precisely, we investigate the optimal scaling of the energy of an elastic inclusion of a fixed volume for which the energy is determined by a surface and an (anisotropic) elastic contribution. Following ideas from Conti and Schweizer (Commun. Pure Appl. Math. 59 (2006), 830–868) and Knüpfer and Kohn (Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 467 (2011), 695–717), we derive the lower scaling bound by invoking a two-well rigidity argument and a covering result. The upper bound follows from a well-known construction for a lens-shaped elastic inclusion. |
| result_subspec |
WOS |
| RIV |
BA |
| FORD0 |
10000 |
| FORD1 |
10100 |
| FORD2 |
10102 |
| reportyear |
2025 |
| num_of_auth |
4 |
| inst_support |
RVO:67985556 |
| permalink |
https://hdl.handle.net/11104/0355756 |
| confidential |
S |
| mrcbC91 |
C |
| mrcbT16-e |
MATHEMATICS.APPLIED|MATHEMATICS |
| mrcbT16-f |
1.2 |
| mrcbT16-g |
0.2 |
| mrcbT16-h |
16.8 |
| mrcbT16-i |
0.00387 |
| mrcbT16-j |
0.878 |
| mrcbT16-k |
2807 |
| mrcbT16-q |
64 |
| mrcbT16-s |
1.076 |
| mrcbT16-y |
33.04 |
| mrcbT16-x |
0.98 |
| mrcbT16-3 |
375 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
0.800 |
| mrcbT16-6 |
131 |
| mrcbT16-7 |
Q2 |
| mrcbT16-C |
52.2 |
| mrcbT16-M |
0.8 |
| mrcbT16-N |
Q2 |
| mrcbT16-P |
67.2 |
| arlyear |
2024 |
| mrcbU14 |
85193696710 SCOPUS |
| mrcbU24 |
PUBMED |
| mrcbU34 |
000986340000001 WOS |
| mrcbU63 |
cav_un_epca*0257502 Proceedings of the Royal Society of Edinburgh. A - Mathematics Roč. 154 č. 3 2024 769 792 0308-2105 1473-7124 Royal Society of Edinburgh |
|