bibtype C - Conference Paper (international conference)
ARLID 0598049
utime 20250317085914.9
mtime 20240910235959.9
SCOPUS 85208427467
WOS 001349787000452
DOI 10.23919/EUSIPCO63174.2024.10715191
title (primary) (eng) Tensor Train Approximation of Multivariate Functions
specification
page_count 5 s.
media_type E
serial
ARLID cav_un_epca*0598048
ISBN 978-9-4645-9361-7
title EUSIPCO 2024
page_num 2262-2266
publisher
place Lyon
name EURASIP
year 2024
keyword tensor train
keyword multivariate function
keyword function interpolation
author (primary)
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
share 80
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0434606
name1 Straka
name2 O.
country CZ
share 20
source
url https://library.utia.cas.cz/separaty/2024/SI/tichavsky-0598049.pdf
source
url https://ieeexplore.ieee.org/document/10715191
cas_special
project
project_id GA22-11101S
agency GA ČR
country CZ
ARLID cav_un_auth*0435406
abstract (eng) The tensor train is a popular model for approximating high-dimensional rectangular data structures that cannot fit in any computer memory due to their size. The tensor train can approximate complex functions with many variables in the continuous domain. The traditional method for obtaining the tensor train model is based on a skeleton decomposition, which is better known for matrices. The skeleton (cross) decomposition has the property that the tensor approximation is accurate on certain tensor fibers but may be poor on other fibers. In this paper, we propose a technique for fitting a tensor train to an arbitrary number of tensor fibers, allowing flexible modeling of multivariate functions that contain noise. Two examples are studied: a noisy Rosenbrock function and a noisy quadratic function, both of order 20.\n
action
ARLID cav_un_auth*0472263
name European Signal Processing Conference 2024 /32./
dates 20240826
mrcbC20-s 20240830
place Lyon
country FR
RIV BB
FORD0 20000
FORD1 20200
FORD2 20201
reportyear 2025
num_of_auth 2
presentation_type PO
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0356116
confidential S
arlyear 2024
mrcbU14 85208427467 SCOPUS
mrcbU24 PUBMED
mrcbU34 001349787000452 WOS
mrcbU63 cav_un_epca*0598048 EUSIPCO 2024 EURASIP 2024 Lyon 2262 2266 978-9-4645-9361-7