bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0598425 |
utime |
20241114073644.7 |
mtime |
20240921235959.9 |
WOS |
001323540900024 |
DOI |
10.1007/978-3-031-65993-5_24 |
title
(primary) (eng) |
Estimation of Conditional Value-at-Risk in Linear Model |
specification |
page_count |
8 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0598452 |
ISBN |
978-3-031-65992-8 |
ISSN |
2194-5357 |
title
|
Combining, Modelling and Analyzing Imprecision, Randomness and Dependence |
page_num |
200-207 |
publisher |
place |
Cham |
name |
Springer |
year |
2024 |
|
|
keyword |
conditional-value-at-risk |
keyword |
averaged regression quantile |
keyword |
two-step regression quantile |
author
(primary) |
ARLID |
cav_un_auth*0368969 |
name1 |
Jurečková |
name2 |
Jana |
institution |
UTIA-B |
department |
SI |
full_dept (cz) |
Stochastická informatika |
full_dept (eng) |
Department of Stochastic Informatics |
department (cz) |
SI |
department (eng) |
SI |
country |
CZ |
share |
33,3 |
garant |
A |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0019770 |
name1 |
Picek |
name2 |
J. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0263018 |
name1 |
Kalina |
name2 |
Jan |
institution |
UIVT-O |
full_dept (cz) |
Oddělení umělé inteligence |
full_dept |
Department of Artificial Intelligence |
full_dept |
Department of Machine Learning |
fullinstit |
Ústav informatiky AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GA22-03636S |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0435411 |
|
project |
project_id |
GA24-11146S |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0474719 |
|
abstract
(eng) |
The conditional value-at-risk (CVaR) represents a popular risk measure often exploited e.g. within portfolio optimization. The situation with a nuisance linear regression is considered here; in other words, we do not observe directly the loss Z of interest, but only Y=\beta _0+X\beta+Z, where the covariates are not under our control. We propose a novel estimator of CVaR(Z) based on the averaged two-step regression quantile combined with an R-estimate of regression parameters. |
action |
ARLID |
cav_un_auth*0472961 |
name |
International Conference on Soft Methods in Probability and Statistics 2024 - SMPS 2024 /11./ |
dates |
20240903 |
mrcbC20-s |
20240906 |
place |
Salzburg |
country |
AT |
|
RIV |
BB |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10103 |
reportyear |
2025 |
num_of_auth |
3 |
mrcbC47 |
UIVT-O 10000 10100 10103 |
presentation_type |
PR |
mrcbC55 |
UIVT-O BB |
inst_support |
RVO:67985556 |
inst_support |
RVO:67985807 |
permalink |
https://hdl.handle.net/11104/0356122 |
cooperation |
ARLID |
cav_un_auth*0472963 |
name |
Technická Univerzita v Liberci, Ústav informatiky a výpočetní techniky AV |
institution |
TUL, UIVT |
country |
CZ |
|
confidential |
S |
arlyear |
2024 |
mrcbU02 |
C |
mrcbU12 |
978-3-031-65992-8 |
mrcbU14 |
SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
001323540900024 WOS |
mrcbU63 |
cav_un_epca*0598452 Combining, Modelling and Analyzing Imprecision, Randomness and Dependence Springer 2024 Cham 200 207 978-3-031-65992-8 Advances in Intelligent Systems and Computing 2194-5357 |
|