bibtype D - Thesis
ARLID 0598658
utime 20241010093514.8
mtime 20240926235959.9
title (primary) (eng) Pathwise Duality of Interacting Particle Systems
publisher
place Praha
name Katedra pravděpodobnosti a matematické statistiky MFF UK
pub_time 2024
specification
page_count 138 s.
media_type P
keyword pathwise duality
keyword interacting particle systems
keyword monotone Markov process
keyword monoid
keyword module
author (primary)
ARLID cav_un_auth*0450907
name1 Latz
name2 Jan Niklas
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
country NL
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2024/SI/latz-0598658.pdf
cas_special
project
project_id SVV 260701
agency GA UK
country CZ
ARLID cav_un_auth*0473203
project
project_id GA20-08468S
agency GA ČR
ARLID cav_un_auth*0397552
abstract (eng) In the study of Markov processes, duality is an important tool used to prove various types of long-time behavior. Nowadays, there exist two predominant approaches to Markov process duality: the algebraic one and the pathwise one. This thesis utilizes the pathwise approach in order to identify new dualities of interacting particle systems and to present previously known dualities within a unified framework. Three classes of pathwise dualities are identified by equipping the state space of an interacting particle system with the additional structure of a monoid, a module over a semiring, and a partially ordered set, respectively. This additional structure then induces a pathwise duality for each interacting particle system that preserves this structure in the sense that its generator can be written using only structure-preserving local maps.
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2025
habilitation
degree Ph.D.
institution Katedra pravděpodobnosti a matematické statistiky MFF UK
place Praha
year 2024
dates 24.9.2024
num_of_auth 1
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0356717
cooperation
ARLID cav_un_auth*0372408
name Karlova Universita v Praze
country CZ
confidential S
arlyear 2024
mrcbU10 2024
mrcbU10 Praha Katedra pravděpodobnosti a matematické statistiky MFF UK