bibtype J - Journal Article
ARLID 0599855
utime 20241101074301.0
mtime 20241025235959.9
DOI 10.2139/ssrn.4083719
title (primary) (eng) Taming data-driven probability distributions
specification
page_count 30 s.
media_type E
serial
ARLID cav_un_epca*0251242
ISSN 0277-6693
title Journal of Forecasting
publisher
name Wiley
keyword distributional forecasting
keyword machine learning
keyword deep learning
keyword probability
keyword economic time series
author (primary)
ARLID cav_un_auth*0242028
name1 Baruník
name2 Jozef
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
full_dept Department of Econometrics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0462008
name1 Hanus
name2 Luboš
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2024/E/hanus-0599855.pdf
cas_special
project
project_id GX19-28231X
agency GA ČR
country CZ
ARLID cav_un_auth*0385135
abstract (eng) We propose a deep learning approach to probabilistic forecasting of macroeconomic and financial time series. By allowing complex time series patterns to be learned from a data-rich environment, our approach is useful for decision making that depends on the uncertainty of a large number of economic outcomes. In particular, it is informative for agents facing asymmetric dependence of their loss on the outcomes of possibly non-Gaussian and non-linear variables. We demonstrate the usefulness of the proposed approach on two different datasets where a machine learns patterns from the data. First, we illustrate the gains in predicting stock return distributions that are heavy tailed and asymmetric. Second, we construct macroeconomic fan charts that reflect information from a high-dimensional dataset.
RIV AH
FORD0 50000
FORD1 50200
FORD2 50202
reportyear 2025
num_of_auth 2
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0357455
confidential S
mrcbT16-e ECONOMICS|MANAGEMENT
mrcbT16-j 0.782
mrcbT16-D Q3
arlyear 2025
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0251242 Journal of Forecasting SSRN preprint 2025 0277-6693 1099-131X Wiley