bibtype J - Journal Article
ARLID 0599856
utime 20250320143118.1
mtime 20241025235959.9
SCOPUS 85206645259
WOS 001338864500001
DOI 10.1016/j.fss.2024.109153
title (primary) (eng) Uncertainty merging with basic uncertain information in probability environment
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0256642
ISSN 0165-0114
title Fuzzy Sets and Systems
volume_id 498
publisher
name Elsevier
keyword Aggregation
keyword Basic uncertain information
keyword Information fusion
keyword Probabilistic uncertainty
keyword Probability merging
keyword Uncertainty merging
author (primary)
ARLID cav_un_auth*0361232
name1 Jin
name2 L.
country CN
share 20
garant K
author
ARLID cav_un_auth*0045803
name1 Yang
name2 Y.
country CN
author
ARLID cav_un_auth*0474976
name1 Cheng
name2 Z. S.
country CN
share 20
author
ARLID cav_un_auth*0474977
name1 Deveci
name2 M.
country TR
share 20
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 20
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2024/E/mesiar-0599856.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0165011424002999?via%3Dihub
cas_special
abstract (eng) Basic uncertain information is a recently introduced and significant type of uncertainty that proves particularly valuable in decision-making environments with inherent uncertainties. In this study, we propose the concept of uncertainty cognition merging, which effectively combines basic uncertain information granules with probability measures to generate new probability measures within the same probability space. Additionally, we present a degenerated method that merges basic uncertain information granules with unit intervals to create new subintervals. We introduce four distinct uncertainty cognition merging methods and thoroughly compare and analyze their respective properties, limitations, and advantages. To demonstrate the practical application potential of our proposals, we provide numerical examples alongside further mathematical results.
reportyear 2026
RIV BA
result_subspec WOS
FORD0 10000
FORD1 10100
FORD2 10101
num_of_auth 5
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0357456
confidential S
article_num 109153
mrcbC91 A
mrcbT16-e COMPUTERSCIENCETHEORYMETHODS|MATHEMATICSAPPLIED|STATISTICSPROBABILITY
mrcbT16-j 0.645
mrcbT16-s 1.009
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2025
mrcbU14 85206645259 SCOPUS
mrcbU24 PUBMED
mrcbU34 001338864500001 WOS
mrcbU63 cav_un_epca*0256642 Fuzzy Sets and Systems 498 1 2025 0165-0114 1872-6801 Elsevier