bibtype J - Journal Article
ARLID 0600099
utime 20241101081030.9
mtime 20241101235959.9
SCOPUS 85153256678
WOS 000973226900001
DOI 10.1007/s11081-023-09801-3
title (primary) (eng) A SDP relaxation of an optimal power flow problem for distribution networks
specification
page_count 30 s.
media_type P
serial
ARLID cav_un_epca*0297191
ISSN 1389-4420
title Optimization and Engineering
volume_id 24
volume 4 (2024)
page_num 2973-3002
publisher
name Springer
keyword Electric power distribution network
keyword Optimal power flow
keyword Convex relaxation
keyword Pareto-front
author (primary)
ARLID cav_un_auth*0475404
name1 Desveaux
name2 V.
country FR
garant K
author
ARLID cav_un_auth*0475405
name1 Handa
name2 Marouan
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
country JP
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2024/MTR/handa-0600099.pdf
cas_special
project
project_id GA22-15524S
agency GA ČR
country CZ
ARLID cav_un_auth*0447354
abstract (eng) In this work, we are interested in an optimal power flow problem with fixed voltage magnitudes in distribution networks. This optimization problem is known to be non-convex and thus difficult to solve. A well-known solution methodology consists in reformulating the objective function and the constraints of the original problem in terms of positive semi-definite matrix traces, to which we add a rank constraint. To convexify the problem, we remove this rank constraint. Our main focus is to provide a strong mathematical proof of the exactness of this convex relaxation technique. To this end, we explore the geometry of the feasible set of the problem via its Pareto-front. We prove that the feasible set of the original problem and the feasible set of its convexification share the same Pareto-front. From a numerical point of view, this exactness result allows to reduce the initial problem to a semi-definite program, which can be solved by more efficient algorithms.
result_subspec WOS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10102
reportyear 2025
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0357459
confidential S
mrcbC91 C
mrcbT16-e ENGINEERINGMULTIDISCIPLINARY|MATHEMATICSINTERDISCIPLINARYAPPLICATIONS|OPERATIONSRESEARCHMANAGEMENTSCIENCE
mrcbT16-j 0.638
mrcbT16-D Q3
arlyear 2024
mrcbU14 85153256678 SCOPUS
mrcbU24 PUBMED
mrcbU34 000973226900001 WOS
mrcbU63 cav_un_epca*0297191 Optimization and Engineering Roč. 24 č. 4 2024 2973 3002 1389-4420 1573-2924 Springer