bibtype J - Journal Article
ARLID 0600118
utime 20250207134350.5
mtime 20241101235959.9
SCOPUS 85208441589
WOS 001351750900001
DOI 10.3390/math12213424
title (primary) (eng) Synchronization of Multi-Agent Systems Composed of Second-Order Underactuated Agents
specification
page_count 19 s.
media_type E
serial
ARLID cav_un_epca*0453601
ISSN 2227-7390
title Mathematics
volume_id 12
page_num MMAAIMAS 2024 (2024)
publisher
name MDPI
keyword Nonlinear multi-agent systems
keyword Underactuated systems
keyword Robust control
author (primary)
ARLID cav_un_auth*0216347
name1 Rehák
name2 Branislav
institution UTIA-B
full_dept (cz) Teorie řízení
full_dept (eng) Department of Control Theory
department (cz)
department (eng) TR
full_dept Department of Control Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0414979
name1 Lynnyk
name2 Anna
institution UTIA-B
full_dept (cz) Teorie řízení
full_dept Department of Control Theory
department (cz)
department TR
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0215855
name1 Lynnyk
name2 Volodymyr
institution UTIA-B
full_dept (cz) Teorie řízení
full_dept Department of Control Theory
department (cz)
department TR
full_dept Department of Control Theory
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2024/TR/rehak-0600118.pdf
source
url https://www.mdpi.com/2227-7390/12/21/3424
cas_special
abstract (eng) The consensus problem of a multi-agent system with nonlinear second-order underactuated agents is addressed. The essence of the approach can be outlined as follows: the output is redesigned first so that the agents attain the minimum-phase property. The second step is to apply the exact feedback linearization to the agents. This transformation divides their dynamics into a linear observable part and a non-observable part. It is shown that consensus of the linearizable parts of the agents implies consensus of the entire multi-agent system. To achieve the consensus of the original system, the inverse transformation of the exact feedback linearization is applied. However, its application causes changes in the dynamics of the multi-agent system. a way to mitigate this effect is proposed. Two examples are presented to illustrate the efficiency of the proposed synchronization algorithm. These examples demonstrate that the synchronization error decreases faster when the proposed method is applied. This holds not only for the states constituting the linearizable dynamics but also for the hidden internal dynamics.
result_subspec WOS
RIV BC
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2025
num_of_auth 3
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0357483
confidential S
article_num 3424
mrcbC91 A
mrcbT16-e MATHEMATICS
mrcbT16-j 0.374
mrcbT16-s 0.475
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2024
mrcbU14 85208441589 SCOPUS
mrcbU24 PUBMED
mrcbU34 001351750900001 WOS
mrcbU63 cav_un_epca*0453601 Mathematics 2227-7390 2227-7390 Roč. 12 č. 21 - Spec. Iss. MMAAIMAS 2024 2024 MDPI ONLINE