bibtype M - Monography Chapter
ARLID 0600155
utime 20250317092607.9
mtime 20241102235959.9
DOI 10.1007/978-3-031-61853-6_12
title (primary) (eng) The Process Induced by Slope Components of α-Regression Quantile
specification
page_count 10 s.
book_pages 618
media_type P
serial
ARLID cav_un_epca*0602332
ISBN 978-3-031-61852-9
title Recent Advances in Econometrics and Statistics
page_num 231-240
publisher
place Cham
name Springer
year 2024
editor
name1 Barigozzi
name2 Matteo
editor
name1 Hörmann
name2 Siegfried
editor
name1 Paindaveine
name2 Davy
keyword Regression quantile
keyword R-estimator
keyword Brownian Bridge
author (primary)
ARLID cav_un_auth*0368969
name1 Jurečková
name2 Jana
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
country CZ
share 100
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2024/SI/jureckova-0600155.pdf
source
url https://link.springer.com/chapter/10.1007/978-3-031-61853-6_12
cas_special
project
project_id GA22-03636S
agency GA ČR
country CZ
ARLID cav_un_auth*0435411
abstract (eng) We consider the linear regression model, along with the process induced by its α-regression quantile, 0 <α< 1. While only the intercept component of the α-regression quantile estimates the quantile F^−1(α) of the model errors, the α also affects the slope components, whose dispersion infinitely increases as α → 0, 1, in the same rate as the variance of the sample α-quantile. The process of the slope components of α-regression quantile over α ∈ (0, 1) is asymptotically \nequivalent to the process of R-estimates of the slope parameters in the linear model, generated by the Hájek rank scores. Both processes converge to the vector of independent Brownian bridges under exponentially tailed parent distribution F, after standardization by f (F^−1(α)).
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2025
result_subspec JINE
num_of_auth 1
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0357780
confidential S
mrcbC91 A
arlyear 2024
mrcbU02 M
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0602332 Recent Advances in Econometrics and Statistics Springer 2024 Cham 231 240 978-3-031-61852-9
mrcbU67 Barigozzi Matteo 340
mrcbU67 Hörmann Siegfried 340
mrcbU67 Paindaveine Davy 340