bibtype |
J -
Journal Article
|
ARLID |
0600509 |
utime |
20241115104224.1 |
mtime |
20241108235959.9 |
SCOPUS |
85208215688 |
DOI |
10.1016/j.eneco.2024.107982 |
title
(primary) (eng) |
Predicting the volatility of major energy commodity prices: the dynamic persistence model |
specification |
page_count |
7 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0250426 |
ISSN |
0140-9883 |
title
|
Energy Economics |
volume_id |
140 |
publisher |
|
|
keyword |
persistence heterogeneity |
keyword |
wold decomposition |
keyword |
local stationarity |
keyword |
time-varying parameters |
author
(primary) |
ARLID |
cav_un_auth*0242028 |
name1 |
Baruník |
name2 |
Jozef |
institution |
UTIA-B |
full_dept (cz) |
Ekonometrie |
full_dept (eng) |
Department of Econometrics |
department (cz) |
E |
department (eng) |
E |
full_dept |
Department of Econometrics |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101217 |
name1 |
Vácha |
name2 |
Lukáš |
institution |
UTIA-B |
full_dept (cz) |
Ekonometrie |
full_dept |
Department of Econometrics |
department (cz) |
E |
department |
E |
full_dept |
Department of Econometrics |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
source |
|
cas_special |
project |
project_id |
GX19-28231X |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0385135 |
|
abstract
(eng) |
Time variation and persistence are crucial properties of volatility that are often studied separately in energy volatility forecasting models. Here, we propose a novel approach that allows shocks with heterogeneous persistence to vary smoothly over time, and thus model the two together. We argue that this is important because such dynamics arise naturally from the dynamic nature of shocks in energy commodities. We identify such dynamics from the data using localised regressions and build a model that significantly improves volatility forecasts. Such forecasting models, based on a rich persistence structure that varies smoothly over time, outperform state-of-the-art benchmark models and are particularly useful for forecasting over longer horizons. |
result_subspec |
WOS |
RIV |
AH |
FORD0 |
50000 |
FORD1 |
50200 |
FORD2 |
50202 |
reportyear |
2025 |
num_of_auth |
2 |
inst_support |
RVO:67985556 |
permalink |
https://hdl.handle.net/11104/0358246 |
confidential |
S |
article_num |
107982 |
mrcbC91 |
C |
mrcbT16-e |
ECONOMICS |
mrcbT16-j |
2.112 |
mrcbT16-D |
Q1 |
arlyear |
2024 |
mrcbU14 |
85208215688 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
WOS |
mrcbU63 |
cav_un_epca*0250426 Energy Economics 140 1 2024 0140-9883 1873-6181 Elsevier |
|