bibtype J - Journal Article
ARLID 0600509
utime 20241115104224.1
mtime 20241108235959.9
SCOPUS 85208215688
DOI 10.1016/j.eneco.2024.107982
title (primary) (eng) Predicting the volatility of major energy commodity prices: the dynamic persistence model
specification
page_count 7 s.
media_type P
serial
ARLID cav_un_epca*0250426
ISSN 0140-9883
title Energy Economics
volume_id 140
publisher
name Elsevier
keyword persistence heterogeneity
keyword wold decomposition
keyword local stationarity
keyword time-varying parameters
author (primary)
ARLID cav_un_auth*0242028
name1 Baruník
name2 Jozef
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
full_dept Department of Econometrics
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101217
name1 Vácha
name2 Lukáš
institution UTIA-B
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2024/E/barunik-0600509.pdf
source
url https://www.sciencedirect.com/science/article/pii/S014098832400690X?via%3Dihub
cas_special
project
project_id GX19-28231X
agency GA ČR
country CZ
ARLID cav_un_auth*0385135
abstract (eng) Time variation and persistence are crucial properties of volatility that are often studied separately in energy volatility forecasting models. Here, we propose a novel approach that allows shocks with heterogeneous persistence to vary smoothly over time, and thus model the two together. We argue that this is important because such dynamics arise naturally from the dynamic nature of shocks in energy commodities. We identify such dynamics from the data using localised regressions and build a model that significantly improves volatility forecasts. Such forecasting models, based on a rich persistence structure that varies smoothly over time, outperform state-of-the-art benchmark models and are particularly useful for forecasting over longer horizons.
result_subspec WOS
RIV AH
FORD0 50000
FORD1 50200
FORD2 50202
reportyear 2025
num_of_auth 2
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0358246
confidential S
article_num 107982
mrcbC91 C
mrcbT16-e ECONOMICS
mrcbT16-j 2.112
mrcbT16-D Q1
arlyear 2024
mrcbU14 85208215688 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0250426 Energy Economics 140 1 2024 0140-9883 1873-6181 Elsevier