bibtype C - Conference Paper (international conference)
ARLID 0601671
utime 20241209115826.1
mtime 20241125235959.9
DOI 10.5220/0013011700003822
title (primary) (eng) Identification of Piezoelectric Actuator Using Bayesian Approach and Neural Networks
specification
page_count 9 s.
media_type E
serial
ARLID cav_un_epca*0601670
ISBN 978-989-758-717-7
ISSN 2184-2809
title Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics (ICINCO 2024)
page_num 591-599
publisher
place Setubal
name SCITEPRESS
year 2024
editor
name1 Gini
name2 Giuseppina
editor
name1 Precup
name2 Radu-Emil
editor
name1 Filev
name2 Dimitar
keyword Piezoceramic Actuator
keyword Hammerstein Model
keyword Bayesian Estimation
keyword ARX Model
keyword Physical Modelling
keyword Euler–Bernoulli Beam Theory
author (primary)
ARLID cav_un_auth*0382598
name1 Kuklišová Pavelková
name2 Lenka
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
full_dept Department of Adaptive Systems
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101064
name1 Belda
name2 Květoslav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2024/AS/kuklisova-0601671.pdf
cas_special
project
project_id GC23-04676J
agency GA ČR
country CZ
ARLID cav_un_auth*0453493
abstract (eng) The paper deals with a modelling and identification of a class of piezoelectric actuators intended for mechatronic and bio-inspired robotic applications. Specifically, a commercial piezoelectric bender PL140 from Physik Instrumente Co. is used. Considering catalogue/datasheet parameters, a physical model of PL140 is derived using Euler-Bernoulli beam theory. This model serves as a substitution of reality to generate proper data without potentially damaging the real actuator. However, due to its complex structure, this model cannot be used for control design. For this purpose, a Hammerstein model is proposed. It consists of a static nonlinear part describing the hysteresis and a dynamic linear part that is represented by the auto-regressive model with exogenous input (ARX model). The nonlinear part of the Hammerstein model is identified by a neural network. The Bayesian approach is used for the estimation of the ARX model parameters.
action
ARLID cav_un_auth*0477334
name International Conference on Informatics in Control, Automation and Robotics 2024 (ICINCO 2024) /21./
dates 20241118
mrcbC20-s 20241120
place Porto
country PT
RIV BC
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2025
num_of_auth 2
presentation_type PR
mrcbC55 UTIA-B BC
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0359677
confidential S
arlyear 2024
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0601670 Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics (ICINCO 2024) SCITEPRESS 2024 Setubal 591 599 978-989-758-717-7 2184-2809
mrcbU67 Gini Giuseppina 340
mrcbU67 Precup Radu-Emil 340
mrcbU67 Filev Dimitar 340