bibtype C - Conference Paper (international conference)
ARLID 0602283
utime 20250423154026.9
mtime 20241204235959.9
DOI 10.1007/978-3-031-85187-2_17
title (primary) (eng) STAR: Screen Time and Actor Recognition in Video Content
specification
page_count 15 s.
media_type P
serial
ARLID cav_un_epca*0616816
ISBN 978-3-031-85186-5
title Pattern Recognition : 46th DAGM German Conference, DAGM GCPR 2024
page_num 270-284
publisher
place Cham
name Springer
year 2025
keyword Screen Time
keyword Actor Recognition
keyword Video Analysis
keyword Computer Vision
keyword Machine Learning
keyword Star Dataset
author (primary)
ARLID cav_un_auth*0379363
name1 Kerepecký
name2 Tomáš
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101238
name1 Zitová
name2 Barbara
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101087
name1 Flusser
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/ZOI/kerepecky-0602283.pdf
source
url https://link.springer.com/chapter/10.1007/978-3-031-85187-2_17
cas_special
project
project_id GA24-10069S
agency GA ČR
country CZ
ARLID cav_un_auth*0472834
abstract (eng) Accurately measuring the duration of actors' presence in videos is a challenging task that goes beyond actor recognition. We propose the STAR pipeline, the new model designed to analyze the time performers appear on screen across diverse video content, including movies and TV shows. The proposed model has been successfully deployed and tested by the Czech TV infrastructure provider. Our pipeline uses machine learning techniques for shot detection, face detection, tracking, recognition, and introduces a novel shot-based method for calculating screen time. We present extensive experiments proving the robustness and real-time performance of our approach. Alongside the pipeline, we introduce the STAR dataset to address the need for high-quality benchmarks in evaluating screen time models, now available for download.
action
ARLID cav_un_auth*0478046
name The German Conference on Pattern Recognition (GCPR) 2024 /46./
dates 20240910
mrcbC20-s 20240913
place Munich
country DE
RIV IN
FORD0 20000
FORD1 20200
FORD2 20206
reportyear 2026
presentation_type PO
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0365906
confidential S
arlyear 2025
mrcbU02 C
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0616816 Pattern Recognition : 46th DAGM German Conference, DAGM GCPR 2024 978-3-031-85186-5 270 284 Cham Springer 2025 Lecture Notes in Computer Science 15298