bibtype J - Journal Article
ARLID 0602391
utime 20241209125606.7
mtime 20241205235959.9
SCOPUS 85197505848
WOS 001317613700001
DOI 10.1080/01621459.2024.2366029
title (primary) (eng) Nonparametric Multiple-Output Center-Outward Quantile Regression
specification
page_count 15 s.
media_type P
serial
ARLID cav_un_epca*0253552
ISSN 0162-1459
title Journal of the American Statistical Association
keyword center-outward quantiles
keyword multiple-output regression
keyword optimal transport
author (primary)
ARLID cav_un_auth*0478145
name1 del Barrio
name2 E.
country ES
author
ARLID cav_un_auth*0478144
name1 Sanz
name2 A. G.
country US
author
ARLID cav_un_auth*0478146
name1 Hallin
name2 Marc
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
country BE
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2024/SI/hallin-0602391.pdf
cas_special
project
project_id GA22-03636S
agency GA ČR
country CZ
ARLID cav_un_auth*0435411
project
project_id GA24-10078S
agency GA ČR
country CZ
ARLID cav_un_auth*0472835
abstract (eng) Building on recent measure-transportation-based concepts of multivariate quantiles, we are considering the problem of nonparametric multiple-output quantile regression. Our approach defines nested conditional center-outward quantile regression contours and regions with given conditional probability content, the graphs of which constitute nested center-outward quantile regression tubes with given unconditional probability content. These (conditional and unconditional) probability contents do not depend on the underlying distribution—an essential property of quantile concepts. Empirical counterparts of these concepts are constructed, yielding interpretable empirical contours, regions, and tubes which are shown to consistently reconstruct (in the Pompeiu-Hausdorff topology) their population versions. Our method is entirely non-parametric and performs well in simulations—with possible heteroscedasticity and nonlinear trends. Its potential as a data-analytic tool is illustrated on some real datasets. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
result_subspec WOS
RIV BA
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2025
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0359700
confidential S
mrcbC91 A
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-j 4.497
mrcbT16-D Q1*
arlyear 2024
mrcbU14 85197505848 SCOPUS
mrcbU24 PUBMED
mrcbU34 001317613700001 WOS
mrcbU63 cav_un_epca*0253552 Journal of the American Statistical Association 2024 0162-1459 1537-274X