bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0602524 |
utime |
20241213113904.5 |
mtime |
20241209235959.9 |
DOI |
10.1007/978-3-031-78172-8_21 |
title
(primary) (eng) |
Texture Spectral Decorrelation Criteria |
specification |
page_count |
10 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0602523 |
ISBN |
978-3-031-78172-8 |
ISSN |
0302-9743 |
title
|
Pattern Recognition : 27th International Conference, ICPR 2024 |
part_title |
Lecture Notes in Computer Science |
page_num |
324-333 |
publisher |
place |
Cham |
name |
Springer Nature Switzerland |
year |
2025 |
|
editor |
name1 |
Antonacopoulos |
name2 |
Apostolos |
|
editor |
name1 |
Chaudhuri |
name2 |
Subhasis |
|
editor |
name1 |
Chellappa |
name2 |
Rama |
|
editor |
name1 |
Liu |
name2 |
Cheng-Lin |
|
editor |
name1 |
Bhattacharya |
name2 |
Saumik |
|
editor |
|
|
keyword |
Texture spectral quality comparison |
keyword |
Texture modeling |
keyword |
Texture synthesis |
keyword |
Bidirectional texture function |
author
(primary) |
ARLID |
cav_un_auth*0101093 |
name1 |
Haindl |
name2 |
Michal |
institution |
UTIA-B |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept (eng) |
Department of Pattern Recognition |
department (cz) |
RO |
department (eng) |
RO |
full_dept |
Department of Pattern Recognition |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0283206 |
name1 |
Havlíček |
name2 |
Michal |
institution |
UTIA-B |
department |
RO |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept |
Department of Pattern Recognition |
department (cz) |
RO |
department |
RO |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
abstract
(eng) |
We introduce texture spectral criteria, which allow us to predict whether simplified spectrally factorized random field-based texture models, a set of two-dimensional models, can faithfully replicate texture spectra compared to their fully spectrally correlated 3D counterparts. These probabilistic models incorporate essential two- or three-dimensional building factors for modeling the seven-dimensional Bidirectional Texture Function (BTF), the most advanced representation in real-world material visual properties modeling. While these models seamlessly approximate original measured massive data and extend them to arbitrary sizes or simulate unmeasured textures, evaluating typically involves time-consuming synthesis and psycho-physical evaluation. The proposed criteria provide an alternative approach, enabling us to bypass the spectral quality evaluation step. |
action |
ARLID |
cav_un_auth*0478337 |
name |
International Conference on Pattern Recognition 2024 /27./ |
dates |
20241201 |
mrcbC20-s |
20241205 |
place |
Kolkata |
country |
IN |
|
RIV |
BD |
FORD0 |
20000 |
FORD1 |
20200 |
FORD2 |
20202 |
reportyear |
2025 |
num_of_auth |
2 |
presentation_type |
PO |
inst_support |
RVO:67985556 |
permalink |
https://hdl.handle.net/11104/0360012 |
confidential |
S |
article_num |
21 |
arlyear |
2025 |
mrcbU14 |
SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
WOS |
mrcbU63 |
cav_un_epca*0602523 Pattern Recognition : 27th International Conference, ICPR 2024 Springer Nature Switzerland 2025 Cham 324 333 978-3-031-78172-8 Lecture Notes in Computer Science 15306 0302-9743 1611-3349 |
mrcbU67 |
Antonacopoulos Apostolos 340 |
mrcbU67 |
Chaudhuri Subhasis 340 |
mrcbU67 |
Chellappa Rama 340 |
mrcbU67 |
Liu Cheng-Lin 340 |
mrcbU67 |
Bhattacharya Saumik 340 |
mrcbU67 |
Pal Umapada 340 |
|