bibtype C - Conference Paper (international conference)
ARLID 0602524
utime 20241213113904.5
mtime 20241209235959.9
DOI 10.1007/978-3-031-78172-8_21
title (primary) (eng) Texture Spectral Decorrelation Criteria
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0602523
ISBN 978-3-031-78172-8
ISSN 0302-9743
title Pattern Recognition : 27th International Conference, ICPR 2024
part_title Lecture Notes in Computer Science
page_num 324-333
publisher
place Cham
name Springer Nature Switzerland
year 2025
editor
name1 Antonacopoulos
name2 Apostolos
editor
name1 Chaudhuri
name2 Subhasis
editor
name1 Chellappa
name2 Rama
editor
name1 Liu
name2 Cheng-Lin
editor
name1 Bhattacharya
name2 Saumik
editor
name1 Pal
name2 Umapada
keyword Texture spectral quality comparison
keyword Texture modeling
keyword Texture synthesis
keyword Bidirectional texture function
author (primary)
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0283206
name1 Havlíček
name2 Michal
institution UTIA-B
department RO
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2024/RO/haindl-0602524.pdf
cas_special
abstract (eng) We introduce texture spectral criteria, which allow us to predict whether simplified spectrally factorized random field-based texture models, a set of two-dimensional models, can faithfully replicate texture spectra compared to their fully spectrally correlated 3D counterparts. These probabilistic models incorporate essential two- or three-dimensional building factors for modeling the seven-dimensional Bidirectional Texture Function (BTF), the most advanced representation in real-world material visual properties modeling. While these models seamlessly approximate original measured massive data and extend them to arbitrary sizes or simulate unmeasured textures, evaluating typically involves time-consuming synthesis and psycho-physical evaluation. The proposed criteria provide an alternative approach, enabling us to bypass the spectral quality evaluation step.
action
ARLID cav_un_auth*0478337
name International Conference on Pattern Recognition 2024 /27./
dates 20241201
mrcbC20-s 20241205
place Kolkata
country IN
RIV BD
FORD0 20000
FORD1 20200
FORD2 20202
reportyear 2025
num_of_auth 2
presentation_type PO
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0360012
confidential S
article_num 21
arlyear 2025
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0602523 Pattern Recognition : 27th International Conference, ICPR 2024 Springer Nature Switzerland 2025 Cham 324 333 978-3-031-78172-8 Lecture Notes in Computer Science 15306 0302-9743 1611-3349
mrcbU67 Antonacopoulos Apostolos 340
mrcbU67 Chaudhuri Subhasis 340
mrcbU67 Chellappa Rama 340
mrcbU67 Liu Cheng-Lin 340
mrcbU67 Bhattacharya Saumik 340
mrcbU67 Pal Umapada 340