bibtype J - Journal Article
ARLID 0602709
utime 20241213092625.6
mtime 20241213235959.9
DOI 10.1007/s42979-024-03504-x
title (primary) (eng) 3D Non‑separable Moment Invariants and Their Use in Neural Networks
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0602712
ISSN 2662-995X
title SN Computer Science
volume_id 5
keyword 3D rotation invariants
keyword Non-separable moments
keyword Appell polynomials
keyword Convolutional neural networks
author (primary)
ARLID cav_un_auth*0438860
name1 Karella
name2 Tomáš
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101203
name1 Suk
name2 Tomáš
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0457087
name1 Košík
name2 Václav
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0426512
name1 Bedratyuk
name2 L.
country UA
author
ARLID cav_un_auth*0379363
name1 Kerepecký
name2 Tomáš
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101087
name1 Flusser
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2024/ZOI/karella-0602709.pdf
cas_special
project
project_id GA24-10069S
agency GA ČR
country CZ
ARLID cav_un_auth*0472834
abstract (eng) Recognition of 3D objects is an important task in many bio-medical and industrial applications. The recognition algorithms should work regardless of a particular orientation of the object in the space. In this paper, we introduce new 3D rotation moment invariants, which are composed of non-separable Appell moments. We show that non-separable moments may outperform the separable ones in terms of recognition power and robustness thanks to a better distribution of their zero surfaces over the image space. We test the numerical properties and discrimination power of the proposed invariants on three real datasets—MRI images of human brain, 3D scans of statues, and confocal microscope images of worms. We show the robustness to resampling errors improved more than twice and the recognition rate increased by 2–10 % comparing to most common descriptors. In the last section, we show how these invariants can be used in state-of-the-art neural networks for image recognition. The proposed H-NeXtA architecture improved the recognition rate by 2–5 % over the current networks.
result_subspec WOS
RIV JD
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2025
num_of_auth 6
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0360004
confidential S
article_num 1166
mrcbC91 A
arlyear 2024
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0602712 SN Computer Science 5 1 2024 2662-995X 2661-8907