bibtype J - Journal Article
ARLID 0616712
utime 20250320140429.9
mtime 20250211235959.9
SCOPUS 85217008719
WOS 001424557500001
DOI 10.1016/j.jhazmat.2025.137510
title (primary) (eng) Spatial-temporal source term estimation using deep neural network prior and its application to Chernobyl wildfires
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0257168
ISSN 0304-3894
title Journal of Hazardous Materials
volume_id 448
publisher
name Elsevier
keyword Atmospheric inversion
keyword Spatial-temporal source
keyword Deep image prior
keyword Deep neural networks
keyword Chernobyl wildfires
author (primary)
ARLID cav_un_auth*0464277
name1 Brožová
name2 Antonie
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101207
name1 Šmídl
name2 Václav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0267768
name1 Tichý
name2 Ondřej
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0363740
name1 Evangeliou
name2 N.
country NO
source
url https://library.utia.cas.cz/separaty/2025/AS/brozova-0616712.pdf
source
url https://www.sciencedirect.com/science/article/pii/S0304389425004224?via%3Dihub
cas_special
project
project_id GA24-10400S
agency GA ČR
country CZ
ARLID cav_un_auth*0464279
project
project_id SGS24/141/OHK4/3T/14
agency GA MŠk
country CZ
ARLID cav_un_auth*0483231
project
project_id 101008004
agency EC
country XE
ARLID cav_un_auth*0437505
abstract (eng) The source term of atmospheric emissions of hazardous materials is a crucial aspect of the analysis of unintended release. Motivated by wildfires of regions contaminated by radioactivity, the focus is placed on the case of airborne transmission of material from 5 dimensions: spatial location described by longitude and latitude in a given area with potentially many sources, time profiles, height above ground level, and the size of particles carrying the material. Since the atmospheric inverse problem is typically ill-posed and the number of measurements is usually too low to estimate the whole 5D tensor, some prior information is necessary. For the first time in this domain, a method based on deep image prior utilizing the structure of a deep neural network to regularize the inversion is proposed. The network is initialized randomly without the need to train it on any dataset first. In tandem with variational optimization, this approach not only introduces smoothness in the spatial estimate of the emissions but also reduces the number of unknowns by enforcing a prior covariance structure in the source term. The strengths of this method are demonstrated on the case of 137Cs emissions during the Chernobyl wildfires in 2020.
reportyear 2026
RIV BB
result_subspec WOS
FORD0 10000
FORD1 10100
FORD2 10103
num_of_auth 4
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0363797
cooperation
ARLID cav_un_auth*0420880
name NILU Norsk Inst Luftforskning, Kjeller, Norway
confidential S
article_num 137510
mrcbC91 C
mrcbT16-e ENGINEERINGENVIRONMENTAL|ENVIRONMENTALSCIENCES
mrcbT16-j 1.947
mrcbT16-s 2.95
mrcbT16-D Q1
mrcbT16-E Q1*
arlyear 2025
mrcbU14 85217008719 SCOPUS
mrcbU24 39922073 PUBMED
mrcbU34 001424557500001 WOS
mrcbU63 cav_un_epca*0257168 Journal of Hazardous Materials 448 1 2025 0304-3894 1873-3336 Elsevier