bibtype |
J -
Journal Article
|
ARLID |
0616904 |
utime |
20250224105459.1 |
mtime |
20250213235959.9 |
SCOPUS |
85216108770 |
WOS |
001420733900001 |
DOI |
10.1016/j.dsp.2025.105022 |
title
(primary) (eng) |
Implicit neural representation for image demosaicking |
specification |
page_count |
14 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0252719 |
ISSN |
1051-2004 |
title
|
Digital Signal Processing |
volume_id |
159 |
publisher |
|
|
keyword |
Demosaicking |
keyword |
Implicit neural representation |
keyword |
Inverse problems |
author
(primary) |
ARLID |
cav_un_auth*0379363 |
name1 |
Kerepecký |
name2 |
Tomáš |
institution |
UTIA-B |
full_dept (cz) |
Zpracování obrazové informace |
full_dept (eng) |
Department of Image Processing |
department (cz) |
ZOI |
department (eng) |
ZOI |
full_dept |
Department of Image Processing |
country |
CZ |
garant |
K |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101209 |
name1 |
Šroubek |
name2 |
Filip |
institution |
UTIA-B |
full_dept (cz) |
Zpracování obrazové informace |
full_dept |
Department of Image Processing |
department (cz) |
ZOI |
department |
ZOI |
full_dept |
Department of Image Processing |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101087 |
name1 |
Flusser |
name2 |
Jan |
institution |
UTIA-B |
full_dept (cz) |
Zpracování obrazové informace |
full_dept |
Department of Image Processing |
department (cz) |
ZOI |
department |
ZOI |
full_dept |
Department of Image Processing |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GA25-15933S |
agency |
GA ČR |
ARLID |
cav_un_auth*0483946 |
|
abstract
(eng) |
We propose a novel approach to enhance image demosaicking algorithms using implicit neural representations (INR). Our method employs a multi-layer perceptron to encode RGB images, combining original Bayer measurements with an initial estimate from existing demosaicking methods to achieve superior reconstructions. A key innovation is the integration of two loss functions: a Bayer loss for fidelity to sensor data and a complementary loss that regularizes reconstruction using interpolated data from the initial estimate. This combination, along with INR’s inherent ability to capture fine details, enables hig-fidelity reconstructions that incorporate information from both sources. Furthermore, we demonstrate that INR can effectively correct artifacts in state-of-the-art demosaicking methods when input data diverge from the training distribution, such as in cases of noise or blur. This adaptability highlights the transformative potential of INR-based demosaicking, offering a robust solution to this challenging problem. |
result_subspec |
WOS |
RIV |
IN |
FORD0 |
10000 |
FORD1 |
10200 |
FORD2 |
10201 |
reportyear |
2025 |
num_of_auth |
3 |
inst_support |
RVO:67985556 |
permalink |
https://hdl.handle.net/11104/0364269 |
cooperation |
ARLID |
cav_un_auth*0329918 |
name |
FJFI ČVUT Praha |
country |
CZ |
|
confidential |
S |
article_num |
105022 |
mrcbC91 |
C |
mrcbT16-e |
ENGINEERINGELECTRICALELECTRONIC |
mrcbT16-j |
0.68 |
mrcbT16-s |
0.799 |
mrcbT16-D |
Q3 |
mrcbT16-E |
Q2 |
arlyear |
2025 |
mrcbU14 |
85216108770 SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
001420733900001 WOS |
mrcbU63 |
cav_un_epca*0252719 Digital Signal Processing 159 1 2025 1051-2004 1095-4333 Elsevier |
|