bibtype J - Journal Article
ARLID 0616904
utime 20250224105459.1
mtime 20250213235959.9
SCOPUS 85216108770
WOS 001420733900001
DOI 10.1016/j.dsp.2025.105022
title (primary) (eng) Implicit neural representation for image demosaicking
specification
page_count 14 s.
media_type P
serial
ARLID cav_un_epca*0252719
ISSN 1051-2004
title Digital Signal Processing
volume_id 159
publisher
name Elsevier
keyword Demosaicking
keyword Implicit neural representation
keyword Inverse problems
author (primary)
ARLID cav_un_auth*0379363
name1 Kerepecký
name2 Tomáš
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
full_dept Department of Image Processing
country CZ
garant K
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101087
name1 Flusser
name2 Jan
institution UTIA-B
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/ZOI/kerepecky-0616904.pdf
cas_special
project
project_id GA25-15933S
agency GA ČR
ARLID cav_un_auth*0483946
abstract (eng) We propose a novel approach to enhance image demosaicking algorithms using implicit neural representations (INR). Our method employs a multi-layer perceptron to encode RGB images, combining original Bayer measurements with an initial estimate from existing demosaicking methods to achieve superior reconstructions. A key innovation is the integration of two loss functions: a Bayer loss for fidelity to sensor data and a complementary loss that regularizes reconstruction using interpolated data from the initial estimate. This combination, along with INR’s inherent ability to capture fine details, enables hig-fidelity reconstructions that incorporate information from both sources. Furthermore, we demonstrate that INR can effectively correct artifacts in state-of-the-art demosaicking methods when input data diverge from the training distribution, such as in cases of noise or blur. This adaptability highlights the transformative potential of INR-based demosaicking, offering a robust solution to this challenging problem.
result_subspec WOS
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2025
num_of_auth 3
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0364269
cooperation
ARLID cav_un_auth*0329918
name FJFI ČVUT Praha
country CZ
confidential S
article_num 105022
mrcbC91 C
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 0.68
mrcbT16-s 0.799
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2025
mrcbU14 85216108770 SCOPUS
mrcbU24 PUBMED
mrcbU34 001420733900001 WOS
mrcbU63 cav_un_epca*0252719 Digital Signal Processing 159 1 2025 1051-2004 1095-4333 Elsevier