bibtype |
J -
Journal Article
|
ARLID |
0617469 |
utime |
20250320140241.0 |
mtime |
20250226235959.9 |
WOS |
001435562500019 |
DOI |
10.1515/ms-2025-0016 |
title
(primary) (eng) |
An elementary prof of the generalized Itô formula |
specification |
page_count |
10 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0293874 |
ISSN |
0139-9918 |
title
|
Mathematica Slovaca |
volume_id |
75 |
volume |
1 (2025) |
page_num |
205-214 |
publisher |
|
|
keyword |
continuous semimartingales |
keyword |
càdlàg semimartingales |
keyword |
Itô formula |
author
(primary) |
ARLID |
cav_un_auth*0260292 |
name1 |
Ondreját |
name2 |
Martin |
institution |
UTIA-B |
full_dept (cz) |
Stochastická informatika |
full_dept (eng) |
Department of Stochastic Informatics |
department (cz) |
SI |
department (eng) |
SI |
country |
CZ |
share |
50% |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0233028 |
name1 |
Seidler |
name2 |
Jan |
institution |
UTIA-B |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
country |
CZ |
share |
50% |
garant |
K |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
source |
|
cas_special |
project |
project_id |
GA22-12790S |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0449240 |
|
abstract
(eng) |
A new, elementary proof of the generalized one-dimensional Itô formula for functions with a locally absolutely continuous first derivative is proposed. |
reportyear |
2026 |
RIV |
BA |
result_subspec |
WOS |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10103 |
num_of_auth |
2 |
inst_support |
RVO:67985556 |
permalink |
https://hdl.handle.net/11104/0364929 |
confidential |
S |
mrcbC91 |
C |
mrcbT16-e |
MATHEMATICS |
mrcbT16-j |
0.288 |
mrcbT16-s |
0.404 |
mrcbT16-D |
Q4 |
mrcbT16-E |
Q3 |
arlyear |
2025 |
mrcbU14 |
SCOPUS |
mrcbU24 |
PUBMED |
mrcbU34 |
001435562500019 WOS |
mrcbU63 |
cav_un_epca*0293874 Mathematica Slovaca Roč. 75 č. 1 2025 205 214 0139-9918 1337-2211 Walter de Gruyter |
|