bibtype J - Journal Article
ARLID 0617988
utime 20250320135821.7
mtime 20250312235959.9
SCOPUS 85214507269
WOS 001393636900001
DOI 10.3390/math13010097
title (primary) (eng) Attempting the Impossible: Enumerating Extremal Submodular Functions for n = 6
specification
page_count 30 s.
media_type P
serial
ARLID cav_un_epca*0453601
ISSN 2227-7390
title Mathematics
volume_id 13
publisher
name MDPI
keyword vertex enumeration
keyword double description method
keyword submodular functions
author (primary)
ARLID cav_un_auth*0447301
name1 Csirmaz
name2 E. P.
country HU
author
ARLID cav_un_auth*0398469
name1 Csirmaz
name2 Laszlo
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
country HU
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/MTR/csirmaz-0617988.pdf
source
url https://www.mdpi.com/2227-7390/13/1/97
cas_special
project
project_id ERC Advanced Grant ERMiD
agency ERC
country XE
ARLID cav_un_auth*0484880
abstract (eng) Enumerating the extremal submodular functions defined on subsets of a fixed base set has only been done for base sets up to five elements. This paper reports the results of attempting to generate all such functions on a six-element base set. Using improved tools from polyhedral geometry, we have computed 360 billion of them, and provide the first reasonable estimate of their total number, which is expected to be between 1000 and 10,000 times this number. The applied Double Description and Adjacency Decomposition methods require an insertion order of the defining inequalities. We introduce two novel orders, which speed up the computations significantly, and provide additional insight into the highly symmetric structure of submodular functions. We also present an improvement to the combinatorial test used as part of the Double Description method, and use statistical analyses to estimate the degeneracy of the polyhedral cone used to describe these functions. The statistical results also highlight the limitations of the applied methods.
reportyear 2026
RIV BA
result_subspec WOS
FORD0 10000
FORD1 10100
FORD2 10101
num_of_auth 2
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0364931
confidential S
article_num 97
mrcbC91 A
mrcbT16-e MATHEMATICS
mrcbT16-j 0.374
mrcbT16-s 0.475
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2025
mrcbU14 85214507269 SCOPUS
mrcbU24 PUBMED
mrcbU34 001393636900001 WOS
mrcbU63 cav_un_epca*0453601 Mathematics 2227-7390 2227-7390 Roč. 13 č. 1 2025 MDPI ONLINE