bibtype J - Journal Article
ARLID 0618543
utime 20250423143849.7
mtime 20250401235959.9
SCOPUS 105001657523
WOS 001455423000004
DOI 10.1109/LSP.2025.3552005
title (primary) (eng) Optimizing the Order of Modes in Tensor Train Decomposition
specification
page_count 5 s.
media_type P
serial
ARLID cav_un_epca*0253212
ISSN 1070-9908
title IEEE Signal Processing Letters
volume_id 32
volume 3 (2025)
page_num 1361-1365
publisher
name Institute of Electrical and Electronics Engineers
keyword Tensors
keyword Tensor train decomposition
keyword Matrix product state
author (primary)
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0434606
name1 Straka
name2 O.
country CZ
source
url https://library.utia.cas.cz/separaty/2025/SI/tichavsky-0618543.pdf
source
url https://ieeexplore.ieee.org/document/10930561
cas_special
project
project_id GA22-11101S
agency GA ČR
country CZ
ARLID cav_un_auth*0435406
abstract (eng) The tensor train (TT) is a popular way of representing high-dimensional hyper-rectangular data structures called tensors. It is widely used, for example, in quantum chemistry under the name „matrix product state“. The complexity of the TT model mainly depends on the bond dimensions that connect TT cores, constituting the model. Unlike canonical polyadic decomposition, the TT model complexity may depend on the order of the modes/indices in the data structures or the order of the core tensors in the TT, in general. This paper aims to provide methods for optimizing the order of the modes to reduce the bond dimensions. Since the number of possible orderings of the cores is exponentially high, we propose a greedy algorithm that provides a suboptimal solution. We consider three problem setups, i.e., specifications of the tensor: tensor given by a list of all its elements, tensor described by a TT model with some default order of the modes, and tensor obtained by sampling a multivariate function.
result_subspec WOS
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2026
num_of_auth 2
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0365896
confidential S
mrcbC91 C
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 1.049
mrcbT16-s 1.271
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2025
mrcbU14 105001657523 SCOPUS
mrcbU24 PUBMED
mrcbU34 001455423000004 WOS
mrcbU63 cav_un_epca*0253212 IEEE Signal Processing Letters Roč. 32 č. 3 2025 1361 1365 1070-9908 1558-2361 Institute of Electrical and Electronics Engineers