bibtype C - Conference Paper (international conference)
ARLID 0619027
utime 20250423144545.4
mtime 20250416235959.9
DOI 10.1007/978-981-96-3863-5_49
title (primary) (eng) Czech Anti-Covid Rules Evaluation
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0619026
ISBN 978-981-96-3862-8
ISSN 1876-1100
title Proceedings of 2024 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2024)
part_title 1372
page_num 537-546
publisher
place Singapore
name Springer Nature Singapore
year 2025
editor
name1 Su
name2 Ruidan
editor
name1 Frangi
name2 Alejandro F.
editor
name1 Zhang
name2 Yudong
keyword COVID-19
keyword Recursive forecasting model
keyword Bayesian learning
keyword Adaptive multistep predictor
keyword Anti-pandemic measures
author (primary)
ARLID cav_un_auth*0101239
name1 Žid
name2 Pavel
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101100
name1 Havlíček
name2 Vojtěch
institution UTIA-B
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/RO/haindl-0619027.pdf
source
url https://link.springer.com/chapter/10.1007/978-981-96-3863-5_49
cas_special
abstract (eng) We present a retrospective analysis of the efficaciousness of Czech anti-COVID state rules during the first quarter of 2022. This analysis focuses on a specific time window from our four-year evaluation of various restrictive measures implemented by the Czech government, examining long-term data from the first three COVID-19 cases detected in early March 2020 through to September 2024. It traces the evolution from the initial intense response to the virus to the eventual normalization of COVID-19 as a common issue. Our study utilizes an adaptive recursive Bayesian stochastic multidimensional model to predict key COVID-19 metrics from nine essential data series. This model distinguishes between effective measures and those merely disruptive or mistimed. Additionally, it predicts crucial statistics such as hospitalizations, deaths, and symptomatic cases, offering valuable insights for the daily management of anti-COVID measures, necessary precautions, and future pandemic recommendations.
action
ARLID cav_un_auth*0486529
name International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2024)
dates 20241119
mrcbC20-s 20241121
place The University of Manchester
country GB
RIV IN
FORD0 20000
FORD1 20200
FORD2 20205
reportyear 2026
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0365900
confidential S
arlyear 2025
mrcbU14 SCOPUS
mrcbU24 PUBMED
mrcbU34 WOS
mrcbU63 cav_un_epca*0619026 Proceedings of 2024 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2024) Springer Nature Singapore 2025 Singapore 537 546 978-981-96-3862-8 Lecture Notes in Electrical Engineering 1372 1876-1100 1876-1119
mrcbU67 Su Ruidan 340
mrcbU67 Frangi Alejandro F. 340
mrcbU67 Zhang Yudong 340