bibtype J - Journal Article
ARLID 0619365
utime 20250520104838.7
mtime 20250502235959.9
SCOPUS 105004009861
WOS 001487744100001
DOI 10.1016/j.eswa.2025.127716
title (primary) (eng) Optimised conjugate prior for model structure estimation in the exponential family
specification
page_count 9 s.
media_type P
serial
ARLID cav_un_epca*0252943
ISSN 0957-4174
title Expert Systems With Applications
volume_id 283
publisher
name Elsevier
keyword Model structure estimation
keyword Exponential family
keyword ARX model
keyword Feature selection
keyword Forecasting of futures
author (primary)
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
institution UTIA-B
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
share 100
garant A
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url https://library.utia.cas.cz/separaty/2025/AS/karny-0619365.pdf
cas_special
project
project_id CA21169
agency EU-COST
country XE
ARLID cav_un_auth*0452289
abstract (eng) Model structure estimation has gained attention owing to the challenge of analysing large, scarce, and poorly informative data. Bayesian hypothesis testing formally addresses this issue. For nested model structures, an efficient search method provides the maximum a posteriori (MAP) estimate, even in extensive hypothesis spaces. However, estimation quality highly depends on prior probability densities of the unknown, hypothesis-specific parameters. Existing solutions mitigate this issue by estimating multivariate hyperparameters of these\npriors, however, these solutions restrict the hyperparameter space, limiting estimation quality. This study enhances model structure estimation for exponential family models by imposing minimal constraints on the selected hyperparameter. For Gaussian models with linearly weighted auto-regression and regression variables, the MAP hyperparameter estimate is analytic and requires solving only one equation for a scalar variable. Experiments, including a complex simulation and multi-step forecasting of futures prices, confirm the solution\nquality gains.
result_subspec WOS
RIV BD
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2026
num_of_auth 1
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0366453
confidential S
article_num 127716
mrcbC91 C
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE|ENGINEERINGELECTRICALELECTRONIC|OPERATIONSRESEARCHMANAGEMENTSCIENCE
mrcbT16-j 1.33
mrcbT16-s 1.875
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2025
mrcbU14 105004009861 SCOPUS
mrcbU24 PUBMED
mrcbU34 001487744100001 WOS
mrcbU63 cav_un_epca*0252943 Expert Systems With Applications 283 1 2025 0957-4174 1873-6793 Elsevier