bibtype J - Journal Article
ARLID 0619694
utime 20250603102039.9
mtime 20250515235959.9
SCOPUS 105005102546
WOS 001488394600001
DOI 10.1007/s13171-025-00389-7
title (primary) (eng) A Class of Signed Rank Estimators in Regression Models with Random Covariates
specification
page_count 21 s.
media_type P
serial
ARLID cav_un_epca*0619693
ISSN 0976-836X
title Sankhy_A : The Indian Journal of Statistics
keyword Errors in variables
keyword Asymptotic relative efficiency
author (primary)
ARLID cav_un_auth*0368969
name1 Jurečková
name2 Jana
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
country CZ
share 50%
garant S
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0488462
name1 Koul
name2 H. L.
country US
source
url https://library.utia.cas.cz/separaty/2025/SI/jureckova-0619694.pdf
cas_special
project
project_id GA22-03636S
agency GA ČR
country CZ
ARLID cav_un_auth*0435411
abstract (eng) This note proves the asymptotic uniform linearity of a weighted empirical process of residual signed ranks and a class of linear residual signed rank statistics with bounded scores in nonlinear parametric regression models when covariates are random and independent of the errors. This result is used to derive limiting distributions of a class of signed rank estimators of the underlying regression parameters in these models. The latter result is applied to the errors in variables linear regression model to show that these estimators are robust against large measurement error in the sense that the asymptotic relative efficiency of a class of signed rank estimators against the bias corrected least square estimator tends to infinity as the measurement error variance tends \nto infinity (in some cases monotonically), when covariates and regression and measurement errors have Gaussian distributions.
result_subspec WOS
RIV BB
FORD0 10000
FORD1 10100
FORD2 10103
reportyear 2026
num_of_auth 2
mrcbC55 BB
inst_support RVO:67985556
permalink https://hdl.handle.net/11104/0366806
cooperation
ARLID cav_un_auth*0487717
name Michigan State University, East Lansing, USA
institution MSU
confidential S
mrcbC91 A
mrcbT16-s 0.321
mrcbT16-E Q4
arlyear 2025
mrcbU14 105005102546 SCOPUS
mrcbU24 PUBMED
mrcbU34 001488394600001 WOS
mrcbU63 cav_un_epca*0619693 Sankhy_A : The Indian Journal of Statistics 2025 0976-836X 0976-8378